Logo do repositório
 

An Ensemble Pruning Approach to Optimize Intrusion Detection Systems Performance

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

Machine learning techniques have achieved promising results in detecting attacks in computer networks, particularly ensemble learning methods, improving individual classifier's performance. This work focuses on building an ensemble of classifiers to minimize the computational cost to some extent. A diversity-driven pruning method was applied to create stackings using a combination of k-Nearest Neighbors, Decision Trees, Support Vector Machines, and Neural Networks, and validated on six differents datasets. An average accuracy of 99.94% and a reduction in the processing time of 97.34% are reported with heterogeneous ensembles, highlighting the robustness of the proposed approach.

Descrição

Palavras-chave

ensemble learning, ensemble pruning, intrusion detection, stacking

Idioma

Inglês

Citação

Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, v. 2022-October, p. 1173-1179.

Itens relacionados

Financiadores

Unidades

Unidade
Faculdade de Ciências
FC
Campus: Bauru


Cursos de graduação

Programas de pós-graduação