Logo do repositório
 

An Ensemble Pruning Approach to Optimize Intrusion Detection Systems Performance

dc.contributor.authorLucas, Thiago Jose [UNESP]
dc.contributor.authorDa Costa, Kelton A. Pontara [UNESP]
dc.contributor.authorScherer, Rafal
dc.contributor.authorPapa, Joao Paulo [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionCzestochowa University of Technology
dc.date.accessioned2023-07-29T15:15:20Z
dc.date.available2023-07-29T15:15:20Z
dc.date.issued2022-01-01
dc.description.abstractMachine learning techniques have achieved promising results in detecting attacks in computer networks, particularly ensemble learning methods, improving individual classifier's performance. This work focuses on building an ensemble of classifiers to minimize the computational cost to some extent. A diversity-driven pruning method was applied to create stackings using a combination of k-Nearest Neighbors, Decision Trees, Support Vector Machines, and Neural Networks, and validated on six differents datasets. An average accuracy of 99.94% and a reduction in the processing time of 97.34% are reported with heterogeneous ensembles, highlighting the robustness of the proposed approach.en
dc.description.affiliationSão Paulo State University Department of Computing
dc.description.affiliationCzestochowa University of Technology
dc.description.affiliationUnespSão Paulo State University Department of Computing
dc.format.extent1173-1179
dc.identifierhttp://dx.doi.org/10.1109/SMC53654.2022.9945239
dc.identifier.citationConference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, v. 2022-October, p. 1173-1179.
dc.identifier.doi10.1109/SMC53654.2022.9945239
dc.identifier.issn1062-922X
dc.identifier.scopus2-s2.0-85142755955
dc.identifier.urihttp://hdl.handle.net/11449/249410
dc.language.isoeng
dc.relation.ispartofConference Proceedings - IEEE International Conference on Systems, Man and Cybernetics
dc.sourceScopus
dc.subjectensemble learning
dc.subjectensemble pruning
dc.subjectintrusion detection
dc.subjectstacking
dc.titleAn Ensemble Pruning Approach to Optimize Intrusion Detection Systems Performanceen
dc.typeTrabalho apresentado em eventopt
dspace.entity.typePublication
relation.isDepartmentOfPublication872c0bbb-bf84-404e-9ca7-f87a0fe94e58
relation.isDepartmentOfPublication.latestForDiscovery872c0bbb-bf84-404e-9ca7-f87a0fe94e58
relation.isOrgUnitOfPublicationaef1f5df-a00f-45f4-b366-6926b097829b
relation.isOrgUnitOfPublication.latestForDiscoveryaef1f5df-a00f-45f4-b366-6926b097829b
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos