Logotipo do repositório
 

Publicação:
Unsupervised rank diffusion for content-based image retrieval

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

Despite the continuous development of features and mid-level representations, effectively and reliably measuring the similarity among images remains a challenging problem in image retrieval tasks. Once traditional measures consider only pairwise analysis, context-sensitive measures capable of exploiting the intrinsic manifold structure became indispensable for improving the retrieval performance. In this scenario, diffusion processes and rank-based methods are the most representative approaches. This paper proposes a novel hybrid method, named rank diffusion, which uses a diffusion process based on ranking information. The proposed method consists in a diffusion-based re-ranking approach, which propagates contextual information through a diffusion process defined in terms of top-ranked objects, reducing the computational complexity of the proposed algorithm. Extensive experiments considering a rigorous experimental protocol were conducted on six public image datasets and several different descriptors. Experimental results and comparison with state-of-the-art methods demonstrate that high effectiveness gains can be obtained, despite the low-complexity of the algorithm proposed.

Descrição

Palavras-chave

Content-based image retrieval, Rank diffusion, Unsupervised learning

Idioma

Inglês

Como citar

Neurocomputing, v. 260, p. 478-489.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação