Logotipo do repositório
 

Publicação:
Unsupervised rank diffusion for content-based image retrieval

dc.contributor.authorPedronette, Daniel Carlos Guimarães [UNESP]
dc.contributor.authorTorres, Ricardo da S.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.date.accessioned2018-12-11T17:12:25Z
dc.date.available2018-12-11T17:12:25Z
dc.date.issued2017-10-18
dc.description.abstractDespite the continuous development of features and mid-level representations, effectively and reliably measuring the similarity among images remains a challenging problem in image retrieval tasks. Once traditional measures consider only pairwise analysis, context-sensitive measures capable of exploiting the intrinsic manifold structure became indispensable for improving the retrieval performance. In this scenario, diffusion processes and rank-based methods are the most representative approaches. This paper proposes a novel hybrid method, named rank diffusion, which uses a diffusion process based on ranking information. The proposed method consists in a diffusion-based re-ranking approach, which propagates contextual information through a diffusion process defined in terms of top-ranked objects, reducing the computational complexity of the proposed algorithm. Extensive experiments considering a rigorous experimental protocol were conducted on six public image datasets and several different descriptors. Experimental results and comparison with state-of-the-art methods demonstrate that high effectiveness gains can be obtained, despite the low-complexity of the algorithm proposed.en
dc.description.affiliationDepartment of Statistics Applied Mathematics and Computing State University of São Paulo (UNESP), Rio Claro, SP
dc.description.affiliationRECOD Lab Institute of Computing University of Campinas (UNICAMP), Campinas, SP
dc.description.affiliationUnespDepartment of Statistics Applied Mathematics and Computing State University of São Paulo (UNESP), Rio Claro, SP
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2013/08645-0
dc.description.sponsorshipIdFAPESP: 2013/50155-0
dc.description.sponsorshipIdFAPESP: 2013/50169-1
dc.description.sponsorshipIdCNPq: 306580/2012-8
dc.description.sponsorshipIdCNPq: 484254/2012-0
dc.format.extent478-489
dc.identifierhttp://dx.doi.org/10.1016/j.neucom.2017.04.062
dc.identifier.citationNeurocomputing, v. 260, p. 478-489.
dc.identifier.doi10.1016/j.neucom.2017.04.062
dc.identifier.issn1872-8286
dc.identifier.issn0925-2312
dc.identifier.scopus2-s2.0-85020061088
dc.identifier.urihttp://hdl.handle.net/11449/174686
dc.language.isoeng
dc.relation.ispartofNeurocomputing
dc.relation.ispartofsjr1,073
dc.rights.accessRightsAcesso restrito
dc.sourceScopus
dc.subjectContent-based image retrieval
dc.subjectRank diffusion
dc.subjectUnsupervised learning
dc.titleUnsupervised rank diffusion for content-based image retrievalen
dc.typeArtigo
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claropt
unesp.departmentEstatística, Matemática Aplicada e Computação - IGCEpt

Arquivos