Logotipo do repositório
 

Publicação:
Estabilidade assintótica de uma classe de sistemas não lineares

Carregando...
Imagem de Miniatura

Orientador

Cruz, German Jesus Lozada

Coorientador

Pós-graduação

Matemática - IBILCE

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Estadual Paulista (Unesp)

Tipo

Dissertação de mestrado

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Resumo (português)

No presente trabalho consideramos o sistema de equações diferenciais ordinároas x1 = afλ 1 (x1)+ bfµ 2 (x2) ˙ x2 = cfη 1 (x1)+ dfζ 2 (x2) (I) onde a,b,c e d são coeficientes constantes, λ, ,η e ζ são números racionais positivos numeradores e denominadores ímpares, as funções fi :(−h,h) → R, h> 0, são contínuas e satisfazem as condições fi(0)=0,i =1, 2e xifi(xi) > 0,para xi =0,i =1, 2. Associado ao sistema(I) consideramos a seguinte função V = α Z x1 0 fξ 1 (τ )dτ + Z x2 0 fθ 2 (τ )dτ, (II) onde ξ e θ são número racionais numeradores e denominadores ímpares. Nosso objetivo principal é encontar é encontrar sob quais condições dos parâmetros a,b,c,d e α> 0 a função V definidaem(II) é uma função de Liapunov estita para a solução nula dos sitema (I), o que leva a concluir a estabilidade assintótica da solução nula.

Resumo (inglês)

In this work we consider the system of ordinary differential equations x1 = afλ 1 (x1)+ bfµ 2 (x2) ˙ x2 = cfη 1 (x1)+ dfζ 2 (x2) (I) where a,b,c and d are constantco efficients, λ, ,η and ζ a repositive rational numbers with odd numerators and denominators ,and the functions fi :(−h,h) → R, h> 0,are continuous and satisfy the conditions fi(0)=0,i =1, 2and xifi(xi) > 0,for xi =0,i = 1, 2. Associated to the system(I) we consider the following function V = α Z x1 0 fξ 1 (τ )dτ + Z x2 0 fθ 2 (τ )dτ, (II) where ξ and θ are positive rational numbers with odd numerators and denominators and α is a positive constant. Our main goal is find under what conditions the parameters a,b,c,d and α> 0 the function V defined in(II) is a strict Liapunov function for the zero solution of the system (I), which leads us to conclude the asymptotic stability of zero solution.

Descrição

Palavras-chave

Equações diferenciais ordinarias, Luapunov, Funções de, Estabilidade assintótica, Differential equation, Asymptotic stability, Lyapunov function

Idioma

Português

Como citar

PAVAN, Jucilene de Fátima. Estabilidade assintótica de uma classe de sistemas não lineares. 2010. 72 f. Dissertação (mestrado) - Universidade Estadual Paulista, Instituto de Biociências, Letras e Ciências Exatas, 2010.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação