Logo do repositório
 

On the existence of periodic orbits and KAM tori in the Sprott A system: a special case of the Nosé–Hoover oscillator

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

We consider the well-known Sprott A system, which is a special case of the widely studied Nosé–Hoover oscillator. The system depends on a single real parameter a, and for suitable choices of the parameter value, it is shown to present chaotic behavior, even in the absence of an equilibrium point. In this paper, we prove that, for a≠ 0 , the Sprott A system has neither invariant algebraic surfaces nor polynomial first integrals. For a> 0 small, by using the averaging method we prove the existence of a linearly stable periodic orbit, which bifurcates from a non-isolated zero-Hopf equilibrium point located at the origin. Moreover, we show numerically the existence of nested invariant tori surrounding this periodic orbit. Thus, we observe that these dynamical elements and their perturbation play an important role in the occurrence of chaotic behavior in the Sprott A system.

Descrição

Palavras-chave

Averaging method, Chaotic behavior, Invariant algebraic surfaces, Nested invariant tori, Nosé–Hoover oscillator, Periodic orbits, Sprott A system

Idioma

Inglês

Citação

Nonlinear Dynamics, v. 92, n. 3, p. 1287-1297, 2018.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação