Logotipo do repositório
 

Publicação:
On the Training of Artificial Neural Networks with Radial Basis Function Using Optimum-Path Forest Clustering

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Ieee Computer Soc

Tipo

Trabalho apresentado em evento

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

In this paper, we show how to improve the Radial Basis Function Neural Networks effectiveness by using the Optimum-Path Forest clustering algorithm, since it computes the number of clusters on-the-fly, which can be very interesting for finding the Gaussians that cover the feature space. Some commonly used approaches for this task, such as the well-known k-means, require the number of classes/clusters previous its performance. Although the number of classes is known in supervised applications, the real number of clusters is extremely hard to figure out, since one class may be represented by more than one cluster. Experiments over 9 datasets together with statistical analysis have shown the suitability of OPF clustering for the RBF training step.

Descrição

Palavras-chave

Artificial Neural Networks, Radial Basis Function, Optimum-Path Forest

Idioma

Inglês

Como citar

2014 22nd International Conference On Pattern Recognition (icpr). Los Alamitos: Ieee Computer Soc, p. 1472-1477, 2014.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação