Publicação: On the Training of Artificial Neural Networks with Radial Basis Function Using Optimum-Path Forest Clustering
dc.contributor.author | Rosa, Gustavo H. [UNESP] | |
dc.contributor.author | Costa, Kelton A. P. [UNESP] | |
dc.contributor.author | Passos Junior, Leandro A. [UNESP] | |
dc.contributor.author | Papa, Joao P. [UNESP] | |
dc.contributor.author | Falcao, Alexandre X. | |
dc.contributor.author | Tavares, Joao Manuel R. S. | |
dc.contributor.author | IEEE | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | |
dc.contributor.institution | Univ Porto | |
dc.date.accessioned | 2019-10-04T20:35:52Z | |
dc.date.available | 2019-10-04T20:35:52Z | |
dc.date.issued | 2014-01-01 | |
dc.description.abstract | In this paper, we show how to improve the Radial Basis Function Neural Networks effectiveness by using the Optimum-Path Forest clustering algorithm, since it computes the number of clusters on-the-fly, which can be very interesting for finding the Gaussians that cover the feature space. Some commonly used approaches for this task, such as the well-known k-means, require the number of classes/clusters previous its performance. Although the number of classes is known in supervised applications, the real number of clusters is extremely hard to figure out, since one class may be represented by more than one cluster. Experiments over 9 datasets together with statistical analysis have shown the suitability of OPF clustering for the RBF training step. | en |
dc.description.affiliation | Sao Paulo State Univ, Dept Comp, Sao Paulo, Brazil | |
dc.description.affiliation | Univ Estadual Campinas, Inst Comp, Sao Paulo, Brazil | |
dc.description.affiliation | Univ Porto, Fac Engn, P-4100 Oporto, Portugal | |
dc.description.affiliationUnesp | Sao Paulo State Univ, Dept Comp, Sao Paulo, Brazil | |
dc.format.extent | 1472-1477 | |
dc.identifier | http://dx.doi.org/10.1109/ICPR.2014.262 | |
dc.identifier.citation | 2014 22nd International Conference On Pattern Recognition (icpr). Los Alamitos: Ieee Computer Soc, p. 1472-1477, 2014. | |
dc.identifier.doi | 10.1109/ICPR.2014.262 | |
dc.identifier.issn | 1051-4651 | |
dc.identifier.uri | http://hdl.handle.net/11449/186395 | |
dc.identifier.wos | WOS:000359818001100 | |
dc.language.iso | eng | |
dc.publisher | Ieee Computer Soc | |
dc.relation.ispartof | 2014 22nd International Conference On Pattern Recognition (icpr) | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Web of Science | |
dc.subject | Artificial Neural Networks | |
dc.subject | Radial Basis Function | |
dc.subject | Optimum-Path Forest | |
dc.title | On the Training of Artificial Neural Networks with Radial Basis Function Using Optimum-Path Forest Clustering | en |
dc.type | Trabalho apresentado em evento | |
dcterms.license | http://www.ieee.org/publications_standards/publications/rights/rights_policies.html | |
dcterms.rightsHolder | Ieee Computer Soc | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências, Bauru | pt |
unesp.department | Computação - FC | pt |