Logotipo do repositório
 

Publicação:
On the Training of Artificial Neural Networks with Radial Basis Function Using Optimum-Path Forest Clustering

dc.contributor.authorRosa, Gustavo H. [UNESP]
dc.contributor.authorCosta, Kelton A. P. [UNESP]
dc.contributor.authorPassos Junior, Leandro A. [UNESP]
dc.contributor.authorPapa, Joao P. [UNESP]
dc.contributor.authorFalcao, Alexandre X.
dc.contributor.authorTavares, Joao Manuel R. S.
dc.contributor.authorIEEE
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniv Porto
dc.date.accessioned2019-10-04T20:35:52Z
dc.date.available2019-10-04T20:35:52Z
dc.date.issued2014-01-01
dc.description.abstractIn this paper, we show how to improve the Radial Basis Function Neural Networks effectiveness by using the Optimum-Path Forest clustering algorithm, since it computes the number of clusters on-the-fly, which can be very interesting for finding the Gaussians that cover the feature space. Some commonly used approaches for this task, such as the well-known k-means, require the number of classes/clusters previous its performance. Although the number of classes is known in supervised applications, the real number of clusters is extremely hard to figure out, since one class may be represented by more than one cluster. Experiments over 9 datasets together with statistical analysis have shown the suitability of OPF clustering for the RBF training step.en
dc.description.affiliationSao Paulo State Univ, Dept Comp, Sao Paulo, Brazil
dc.description.affiliationUniv Estadual Campinas, Inst Comp, Sao Paulo, Brazil
dc.description.affiliationUniv Porto, Fac Engn, P-4100 Oporto, Portugal
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp, Sao Paulo, Brazil
dc.format.extent1472-1477
dc.identifierhttp://dx.doi.org/10.1109/ICPR.2014.262
dc.identifier.citation2014 22nd International Conference On Pattern Recognition (icpr). Los Alamitos: Ieee Computer Soc, p. 1472-1477, 2014.
dc.identifier.doi10.1109/ICPR.2014.262
dc.identifier.issn1051-4651
dc.identifier.urihttp://hdl.handle.net/11449/186395
dc.identifier.wosWOS:000359818001100
dc.language.isoeng
dc.publisherIeee Computer Soc
dc.relation.ispartof2014 22nd International Conference On Pattern Recognition (icpr)
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectArtificial Neural Networks
dc.subjectRadial Basis Function
dc.subjectOptimum-Path Forest
dc.titleOn the Training of Artificial Neural Networks with Radial Basis Function Using Optimum-Path Forest Clusteringen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee Computer Soc
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos