Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Deep Learning and object detection for water level measurement using patterned visual markers

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Ieee-inst Electrical Electronics Engineers Inc

Tipo

Artigo

Direito de acesso

Resumo

Flooding is one of the most impactful natural disasters, causing significant losses and prompting extensive research into monitoring water levels in urban streams. Current technologies rely on pressure and ultrasonic sensors, which, while accurate, can be susceptible to damage from floods and are often costly. As an alternative, ground camera approaches offer a low-cost solution; however, most of these methods use raw images from the water stream and are sensitive to environmental factors. We address this gap with a dataset comprising a visual marker with black bars indicating the water level, which we refer to as barcode panel. We employed various deep learning algorithms to predict the water level and compared their performance. The proposed approach was evaluated using classic classification and error metrics. The models demonstrated accuracy in detecting the water level. These promising results provide important insights for practical applications and future studies.

Descrição

Palavras-chave

Cameras, Floods, Bars, Detectors, Deep learning, Visualization, Water resources, Accuracy, Meteorology, Classification algorithms, deep learning, computer vision, flood management, visual marker

Idioma

Inglês

Citação

Ieee Latin America Transactions. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 22, n. 11, p. 892-898, 2024.

Itens relacionados

Financiadores

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso