Logo do repositório

Deep Learning and object detection for water level measurement using patterned visual markers

dc.contributor.authorDomingues Filho, G. M.
dc.contributor.authorRanieri, C. M. [UNESP]
dc.contributor.authorMatos, S. N.
dc.contributor.authorMeneguette, R. I.
dc.contributor.authorUeyama, J.
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2025-04-29T20:06:50Z
dc.date.issued2024-11-01
dc.description.abstractFlooding is one of the most impactful natural disasters, causing significant losses and prompting extensive research into monitoring water levels in urban streams. Current technologies rely on pressure and ultrasonic sensors, which, while accurate, can be susceptible to damage from floods and are often costly. As an alternative, ground camera approaches offer a low-cost solution; however, most of these methods use raw images from the water stream and are sensitive to environmental factors. We address this gap with a dataset comprising a visual marker with black bars indicating the water level, which we refer to as barcode panel. We employed various deep learning algorithms to predict the water level and compared their performance. The proposed approach was evaluated using classic classification and error metrics. The models demonstrated accuracy in detecting the water level. These promising results provide important insights for practical applications and future studies.en
dc.description.affiliationUniv Sao Paulo, Sao Carlos, Brazil
dc.description.affiliationSao Paulo State Univ, Rio Claro, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Rio Claro, Brazil
dc.format.extent892-898
dc.identifierhttp://dx.doi.org/10.1109/TLA.2024.10738344
dc.identifier.citationIeee Latin America Transactions. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 22, n. 11, p. 892-898, 2024.
dc.identifier.doi10.1109/TLA.2024.10738344
dc.identifier.issn1548-0992
dc.identifier.urihttps://hdl.handle.net/11449/306661
dc.identifier.wosWOS:001346413200003
dc.language.isoeng
dc.publisherIeee-inst Electrical Electronics Engineers Inc
dc.relation.ispartofIeee Latin America Transactions
dc.sourceWeb of Science
dc.subjectCameras
dc.subjectFloods
dc.subjectBars
dc.subjectDetectors
dc.subjectDeep learning
dc.subjectVisualization
dc.subjectWater resources
dc.subjectAccuracy
dc.subjectMeteorology
dc.subjectClassification algorithms
dc.subjectdeep learning
dc.subjectcomputer vision
dc.subjectflood management
dc.subjectvisual marker
dc.titleDeep Learning and object detection for water level measurement using patterned visual markersen
dc.typeArtigopt
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee-inst Electrical Electronics Engineers Inc
dspace.entity.typePublication

Arquivos

Coleções