Publicação: DBBM shows no signs of resorption under inflammatory conditions. An experimental study in the mouse calvaria
Nenhuma Miniatura disponível
Data
2019-09-30
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Wiley-Blackwell
Tipo
Artigo
Direito de acesso
Resumo
Objectives Deproteinized bovine bone mineral (DBBM) is not resorbable. However, the behavior of DBBM under inflammatory conditions remains unclear. Aim of the study was therefore to evaluate the resorption of DBBM under local inflammatory conditions in vivo using the calvarial osteolysis model. Methods In thirty adult BALB/c mice, DBBM was implanted into the space between the elevated soft tissue and the calvarial bone. Inflammation was induced either by lipopolysaccharides (LPS) injection or by polyethylene particles (Ceridust) mixed with DBBM. Three modalities were randomly applied (n = 10 each): (a) DBBM alone (control), (b) DBBM + LPS, and (c) DBBM + polyethylene particles (Ceridust). Mice were euthanized on day fourteen, and each calvarium was subjected to histological and mu CT analysis. Primary outcome was the size distribution of the DBBM particles. Secondary outcome was the surface erosion of the calvarial bone. Results Histological and mu CT analysis revealed that the size distribution and the volume of DBBM particles in the augmented site were similar between DBBM alone and the combinations with LPS or polyethylene particles. Moreover, histological evaluation showed no signs of erosions of DBBM particles under inflammatory conditions. mu CT analysis and histology further revealed that LPS and the polyethylene particles, but not the DBBM alone, caused severe erosions of the calvarial bone as indicated by large voids representing the massive compensatory new immature woven bone formation on the endosteal surface. Conclusions Local calvarial bone but not the DBBM particles undergo severe resorption and subsequent new bone formation under inflammatory conditions in a mouse model.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Clinical Oral Implants Research. Hoboken: Wiley, v. 31, n. 1, p. 10-17, 2020.