Logo do repositório

Appling machine learning for estimating total suspended solids in BFT aquaculture system

dc.contributor.authorTeramoto, Érico Tadao [UNESP]
dc.contributor.authorWasielesky, Wilson
dc.contributor.authorKrummenauer, Dariano
dc.contributor.authorBueno, Guilherme Wolff [UNESP]
dc.contributor.authorProença, Danilo Cintra [UNESP]
dc.contributor.authorGaona, Carlos Augusto Prata [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionFederal University of Rio Grande – FURG
dc.date.accessioned2025-04-29T18:05:50Z
dc.date.issued2024-08-01
dc.description.abstractBiofloc Technology (BFT) systems are used to improve water quality and the production of aquatic organisms, and they influence dissolved oxygen, alkalinity, and pH, directly affecting the efficiency and success of this production system. Measuring total suspended solids (TSS) in water demands substantial investments and involves a time-consuming process to obtain results. This delay in obtaining results poses a significant challenge to the operations of these farms. In this study, we applied Artificial Neural Networks (ANN) and Support Vector Machine (SVM) methods based on artificial intelligence and water quality parameters (easy to measure, low cost, and quick response) to identify the most accurate method for measuring TSS. The best TSS estimate was achieved with SVM using nitrite and turbidity as predictive variables, which tended to overestimate the real value by 19 %, presenting a potential for application in estimating TSS in the BFT aquaculture system.en
dc.description.affiliationSão Paulo State University (UNESP) School of Agricultural Sciences Department of Fisheries Resources and Aquaculture, Registro
dc.description.affiliationGraduate Program in Agricultural Engineering of UNESP
dc.description.affiliationLaboratory of Marine Shrimp Culture Institute of Oceanography Federal University of Rio Grande – FURG
dc.description.affiliationLaboratory of Ecology of Microorganisms Applied to Aquaculture Institute of Oceanography Federal University of Rio Grande – FURG
dc.description.affiliationAquaculture Center of UNESP, Jaboticabal
dc.description.affiliationGraduate Program in Biomaterials and Bioprocess Engineering of UNESP
dc.description.affiliationUnespSão Paulo State University (UNESP) School of Agricultural Sciences Department of Fisheries Resources and Aquaculture, Registro
dc.description.affiliationUnespGraduate Program in Agricultural Engineering of UNESP
dc.description.affiliationUnespAquaculture Center of UNESP, Jaboticabal
dc.description.affiliationUnespGraduate Program in Biomaterials and Bioprocess Engineering of UNESP
dc.description.sponsorshipFinanciadora de Estudos e Projetos
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado do Rio Grande do Sul
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdCAPES: 1527525
dc.description.sponsorshipIdCAPES: 1620404
dc.description.sponsorshipIdFundação de Amparo à Pesquisa do Estado do Rio Grande do Sul: 17/2551
dc.description.sponsorshipIdFAPESP: 2022/02756–4
dc.description.sponsorshipIdFAPESP: 2022/16545–5
dc.description.sponsorshipIdFundação de Amparo à Pesquisa do Estado do Rio Grande do Sul: 21/2551–0002225–6
dc.description.sponsorshipIdCNPq: 30365/2022–1
dc.description.sponsorshipIdCNPq: 307741/2022–2
dc.description.sponsorshipIdCNPq: 313514/2023–2
dc.description.sponsorshipIdCNPq: 426147/2018–9
dc.description.sponsorshipIdCNPq: 428396/2018–6
dc.identifierhttp://dx.doi.org/10.1016/j.aquaeng.2024.102439
dc.identifier.citationAquacultural Engineering, v. 106.
dc.identifier.doi10.1016/j.aquaeng.2024.102439
dc.identifier.issn0144-8609
dc.identifier.scopus2-s2.0-85199213004
dc.identifier.urihttps://hdl.handle.net/11449/297186
dc.language.isoeng
dc.relation.ispartofAquacultural Engineering
dc.sourceScopus
dc.subjectANN
dc.subjectArtificial intelligence precision aquaculture
dc.subjectLitopenaeus vannamei
dc.subjectMultiple linear regression
dc.subjectSVM
dc.titleAppling machine learning for estimating total suspended solids in BFT aquaculture systemen
dc.typeArtigopt
dspace.entity.typePublication
relation.isOrgUnitOfPublication3d807254-e442-45e5-a80b-0f6bf3a26e48
relation.isOrgUnitOfPublication.latestForDiscovery3d807254-e442-45e5-a80b-0f6bf3a26e48
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias do Vale do Ribeira, Registropt
unesp.campusUniversidade Estadual Paulista (UNESP), Centro de Aquicultura da UNESP, Jaboticabalpt
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabalpt

Arquivos