Appling machine learning for estimating total suspended solids in BFT aquaculture system
| dc.contributor.author | Teramoto, Érico Tadao [UNESP] | |
| dc.contributor.author | Wasielesky, Wilson | |
| dc.contributor.author | Krummenauer, Dariano | |
| dc.contributor.author | Bueno, Guilherme Wolff [UNESP] | |
| dc.contributor.author | Proença, Danilo Cintra [UNESP] | |
| dc.contributor.author | Gaona, Carlos Augusto Prata [UNESP] | |
| dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
| dc.contributor.institution | Federal University of Rio Grande – FURG | |
| dc.date.accessioned | 2025-04-29T18:05:50Z | |
| dc.date.issued | 2024-08-01 | |
| dc.description.abstract | Biofloc Technology (BFT) systems are used to improve water quality and the production of aquatic organisms, and they influence dissolved oxygen, alkalinity, and pH, directly affecting the efficiency and success of this production system. Measuring total suspended solids (TSS) in water demands substantial investments and involves a time-consuming process to obtain results. This delay in obtaining results poses a significant challenge to the operations of these farms. In this study, we applied Artificial Neural Networks (ANN) and Support Vector Machine (SVM) methods based on artificial intelligence and water quality parameters (easy to measure, low cost, and quick response) to identify the most accurate method for measuring TSS. The best TSS estimate was achieved with SVM using nitrite and turbidity as predictive variables, which tended to overestimate the real value by 19 %, presenting a potential for application in estimating TSS in the BFT aquaculture system. | en |
| dc.description.affiliation | São Paulo State University (UNESP) School of Agricultural Sciences Department of Fisheries Resources and Aquaculture, Registro | |
| dc.description.affiliation | Graduate Program in Agricultural Engineering of UNESP | |
| dc.description.affiliation | Laboratory of Marine Shrimp Culture Institute of Oceanography Federal University of Rio Grande – FURG | |
| dc.description.affiliation | Laboratory of Ecology of Microorganisms Applied to Aquaculture Institute of Oceanography Federal University of Rio Grande – FURG | |
| dc.description.affiliation | Aquaculture Center of UNESP, Jaboticabal | |
| dc.description.affiliation | Graduate Program in Biomaterials and Bioprocess Engineering of UNESP | |
| dc.description.affiliationUnesp | São Paulo State University (UNESP) School of Agricultural Sciences Department of Fisheries Resources and Aquaculture, Registro | |
| dc.description.affiliationUnesp | Graduate Program in Agricultural Engineering of UNESP | |
| dc.description.affiliationUnesp | Aquaculture Center of UNESP, Jaboticabal | |
| dc.description.affiliationUnesp | Graduate Program in Biomaterials and Bioprocess Engineering of UNESP | |
| dc.description.sponsorship | Financiadora de Estudos e Projetos | |
| dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
| dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul | |
| dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
| dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
| dc.description.sponsorshipId | CAPES: 1527525 | |
| dc.description.sponsorshipId | CAPES: 1620404 | |
| dc.description.sponsorshipId | Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul: 17/2551 | |
| dc.description.sponsorshipId | FAPESP: 2022/02756–4 | |
| dc.description.sponsorshipId | FAPESP: 2022/16545–5 | |
| dc.description.sponsorshipId | Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul: 21/2551–0002225–6 | |
| dc.description.sponsorshipId | CNPq: 30365/2022–1 | |
| dc.description.sponsorshipId | CNPq: 307741/2022–2 | |
| dc.description.sponsorshipId | CNPq: 313514/2023–2 | |
| dc.description.sponsorshipId | CNPq: 426147/2018–9 | |
| dc.description.sponsorshipId | CNPq: 428396/2018–6 | |
| dc.identifier | http://dx.doi.org/10.1016/j.aquaeng.2024.102439 | |
| dc.identifier.citation | Aquacultural Engineering, v. 106. | |
| dc.identifier.doi | 10.1016/j.aquaeng.2024.102439 | |
| dc.identifier.issn | 0144-8609 | |
| dc.identifier.scopus | 2-s2.0-85199213004 | |
| dc.identifier.uri | https://hdl.handle.net/11449/297186 | |
| dc.language.iso | eng | |
| dc.relation.ispartof | Aquacultural Engineering | |
| dc.source | Scopus | |
| dc.subject | ANN | |
| dc.subject | Artificial intelligence precision aquaculture | |
| dc.subject | Litopenaeus vannamei | |
| dc.subject | Multiple linear regression | |
| dc.subject | SVM | |
| dc.title | Appling machine learning for estimating total suspended solids in BFT aquaculture system | en |
| dc.type | Artigo | pt |
| dspace.entity.type | Publication | |
| relation.isOrgUnitOfPublication | 3d807254-e442-45e5-a80b-0f6bf3a26e48 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 3d807254-e442-45e5-a80b-0f6bf3a26e48 | |
| unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias do Vale do Ribeira, Registro | pt |
| unesp.campus | Universidade Estadual Paulista (UNESP), Centro de Aquicultura da UNESP, Jaboticabal | pt |
| unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal | pt |
