Publicação:
Semi-supervised learning with convolutional neural networks for UAV images automatic recognition

Nenhuma Miniatura disponível

Data

2019-09-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Elsevier B.V.

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

The annotation of large datasets is an issue whose challenge increases as the number of labeled samples available to train the classifier reduces in comparison to the amount of unlabeled data. In this context, semi-supervised learning methods aim at discovering and propagating labels to unsupervised samples, such that their correct labeling can improve the classification performance. Our proposal makes use of semi-supervised methodologies to classify an unlabeled training set that is used to train a Convolution Neural Network using different training strategies. The proposed approach is experimentally validated for soybean leaf and herbivorous pest identification using images captured by Unmanned Aerial Vehicles and can support specialists and farmers in the pest control management in soybean fields, especially when they have a limited amount of labeled samples.

Descrição

Idioma

Inglês

Como citar

Computers And Electronics In Agriculture. Oxford: Elsevier Sci Ltd, v. 164, 9 p., 2019.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação