Semi-supervised learning with convolutional neural networks for UAV images automatic recognition
dc.contributor.author | Amorim, Willian Paraguassu | |
dc.contributor.author | Tetila, Everton Castelao | |
dc.contributor.author | Pistori, Hemerson | |
dc.contributor.author | Papa, Joao Paulo [UNESP] | |
dc.contributor.institution | Fed Univ Grande Dourados | |
dc.contributor.institution | Univ Catolica Dom Bosco | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2019-10-06T08:12:05Z | |
dc.date.available | 2019-10-06T08:12:05Z | |
dc.date.issued | 2019-09-01 | |
dc.description.abstract | The annotation of large datasets is an issue whose challenge increases as the number of labeled samples available to train the classifier reduces in comparison to the amount of unlabeled data. In this context, semi-supervised learning methods aim at discovering and propagating labels to unsupervised samples, such that their correct labeling can improve the classification performance. Our proposal makes use of semi-supervised methodologies to classify an unlabeled training set that is used to train a Convolution Neural Network using different training strategies. The proposed approach is experimentally validated for soybean leaf and herbivorous pest identification using images captured by Unmanned Aerial Vehicles and can support specialists and farmers in the pest control management in soybean fields, especially when they have a limited amount of labeled samples. | en |
dc.description.affiliation | Fed Univ Grande Dourados, BR-79804970 Dourados, Brazil | |
dc.description.affiliation | Univ Catolica Dom Bosco, BR-79117900 Campo Grande, Brazil | |
dc.description.affiliation | Sao Paulo State Univ UNESP, BR-17033360 Bauru, Brazil | |
dc.description.affiliationUnesp | Sao Paulo State Univ UNESP, BR-17033360 Bauru, Brazil | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Fundação para o Desenvolvimento da UNESP (FUNDUNESP) | |
dc.description.sponsorship | NVIDIA Corporation | |
dc.description.sponsorship | Foundation to Support the Development of Teaching, Science and Technology of the state of Mato Grosso do Sul (FUNDECT) | |
dc.description.sponsorshipId | CNPq: 427968/2018-6 | |
dc.description.sponsorshipId | CNPq: 307066/2017-7 | |
dc.description.sponsorshipId | FAPESP: 2013/07375-0 | |
dc.description.sponsorshipId | FAPESP: 2014/12236-1 | |
dc.description.sponsorshipId | FAPESP: 2015/25739-4 | |
dc.description.sponsorshipId | FAPESP: 2016/19403-6 | |
dc.description.sponsorshipId | FUNDUNESP: 2597.2017 | |
dc.format.extent | 9 | |
dc.identifier | http://dx.doi.org/10.1016/j.compag.2019.104932 | |
dc.identifier.citation | Computers And Electronics In Agriculture. Oxford: Elsevier Sci Ltd, v. 164, 9 p., 2019. | |
dc.identifier.doi | 10.1016/j.compag.2019.104932 | |
dc.identifier.issn | 0168-1699 | |
dc.identifier.uri | http://hdl.handle.net/11449/186844 | |
dc.identifier.wos | WOS:000483910100030 | |
dc.language.iso | eng | |
dc.publisher | Elsevier B.V. | |
dc.relation.ispartof | Computers And Electronics In Agriculture | |
dc.rights.accessRights | Acesso aberto | pt |
dc.source | Web of Science | |
dc.subject | Semi-supervised learning | |
dc.subject | Convolutional Neural Networks | |
dc.subject | Fine tuning | |
dc.subject | Transfer learning | |
dc.title | Semi-supervised learning with convolutional neural networks for UAV images automatic recognition | en |
dc.type | Artigo | pt |
dcterms.license | http://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy | |
dcterms.rightsHolder | Elsevier B.V. | |
dspace.entity.type | Publication | |
relation.isDepartmentOfPublication | 872c0bbb-bf84-404e-9ca7-f87a0fe94e58 | |
relation.isDepartmentOfPublication.latestForDiscovery | 872c0bbb-bf84-404e-9ca7-f87a0fe94e58 | |
relation.isOrgUnitOfPublication | aef1f5df-a00f-45f4-b366-6926b097829b | |
relation.isOrgUnitOfPublication.latestForDiscovery | aef1f5df-a00f-45f4-b366-6926b097829b | |
unesp.author.orcid | 0000-0001-8181-760X[3] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências, Bauru | pt |
unesp.department | Computação - FC | pt |