Logo do repositório
 

Semi-supervised learning with convolutional neural networks for UAV images automatic recognition

dc.contributor.authorAmorim, Willian Paraguassu
dc.contributor.authorTetila, Everton Castelao
dc.contributor.authorPistori, Hemerson
dc.contributor.authorPapa, Joao Paulo [UNESP]
dc.contributor.institutionFed Univ Grande Dourados
dc.contributor.institutionUniv Catolica Dom Bosco
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2019-10-06T08:12:05Z
dc.date.available2019-10-06T08:12:05Z
dc.date.issued2019-09-01
dc.description.abstractThe annotation of large datasets is an issue whose challenge increases as the number of labeled samples available to train the classifier reduces in comparison to the amount of unlabeled data. In this context, semi-supervised learning methods aim at discovering and propagating labels to unsupervised samples, such that their correct labeling can improve the classification performance. Our proposal makes use of semi-supervised methodologies to classify an unlabeled training set that is used to train a Convolution Neural Network using different training strategies. The proposed approach is experimentally validated for soybean leaf and herbivorous pest identification using images captured by Unmanned Aerial Vehicles and can support specialists and farmers in the pest control management in soybean fields, especially when they have a limited amount of labeled samples.en
dc.description.affiliationFed Univ Grande Dourados, BR-79804970 Dourados, Brazil
dc.description.affiliationUniv Catolica Dom Bosco, BR-79117900 Campo Grande, Brazil
dc.description.affiliationSao Paulo State Univ UNESP, BR-17033360 Bauru, Brazil
dc.description.affiliationUnespSao Paulo State Univ UNESP, BR-17033360 Bauru, Brazil
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipFundação para o Desenvolvimento da UNESP (FUNDUNESP)
dc.description.sponsorshipNVIDIA Corporation
dc.description.sponsorshipFoundation to Support the Development of Teaching, Science and Technology of the state of Mato Grosso do Sul (FUNDECT)
dc.description.sponsorshipIdCNPq: 427968/2018-6
dc.description.sponsorshipIdCNPq: 307066/2017-7
dc.description.sponsorshipIdFAPESP: 2013/07375-0
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdFAPESP: 2015/25739-4
dc.description.sponsorshipIdFAPESP: 2016/19403-6
dc.description.sponsorshipIdFUNDUNESP: 2597.2017
dc.format.extent9
dc.identifierhttp://dx.doi.org/10.1016/j.compag.2019.104932
dc.identifier.citationComputers And Electronics In Agriculture. Oxford: Elsevier Sci Ltd, v. 164, 9 p., 2019.
dc.identifier.doi10.1016/j.compag.2019.104932
dc.identifier.issn0168-1699
dc.identifier.urihttp://hdl.handle.net/11449/186844
dc.identifier.wosWOS:000483910100030
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofComputers And Electronics In Agriculture
dc.rights.accessRightsAcesso abertopt
dc.sourceWeb of Science
dc.subjectSemi-supervised learning
dc.subjectConvolutional Neural Networks
dc.subjectFine tuning
dc.subjectTransfer learning
dc.titleSemi-supervised learning with convolutional neural networks for UAV images automatic recognitionen
dc.typeArtigopt
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
relation.isDepartmentOfPublication872c0bbb-bf84-404e-9ca7-f87a0fe94e58
relation.isDepartmentOfPublication.latestForDiscovery872c0bbb-bf84-404e-9ca7-f87a0fe94e58
relation.isOrgUnitOfPublicationaef1f5df-a00f-45f4-b366-6926b097829b
relation.isOrgUnitOfPublication.latestForDiscoveryaef1f5df-a00f-45f4-b366-6926b097829b
unesp.author.orcid0000-0001-8181-760X[3]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos