Logotipo do repositório
 

Publicação:
Manifold learning-based clustering approach applied to anomaly detection in surveillance videos

dc.contributor.authorLopes, Leonardo Tadeu [UNESP]
dc.contributor.authorValem, Lucas Pascotti [UNESP]
dc.contributor.authorGuimarães Pedronette, Daniel Carlos [UNESP]
dc.contributor.authorGuilherme, Ivan Rizzo [UNESP]
dc.contributor.authorPapa, João Paulo [UNESP]
dc.contributor.authorSilva Santana, Marcos Cleison [UNESP]
dc.contributor.authorColombo, Danilo
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionPetróleo Brasileiro S.A. - Petrobras
dc.date.accessioned2020-12-12T02:39:33Z
dc.date.available2020-12-12T02:39:33Z
dc.date.issued2020-01-01
dc.description.abstractThe huge increase in the amount of multimedia data available and the pressing need for organizing them in different categories, especially in scenarios where there are no labels available, makes data clustering an essential task in different scenarios. In this work, we present a novel clustering method based on an unsupervised manifold learning algorithm, in which a more effective similarity measure is computed by the manifold learning and used for clustering purposes. The proposed approach is applied to anomaly detection in videos and used in combination with different background segmentation methods to improve their effectiveness. An experimental evaluation is conducted on three different image datasets and one video dataset. The obtained results indicate superior accuracy in most clustering tasks when compared to the baselines. Results also demonstrate that the clustering step can improve the results of background subtraction approaches in the majority of cases.en
dc.description.affiliationDepartment of Statistics Applied Math. and Computing UNESP - São Paulo State University
dc.description.affiliationSchool of Sciences UNESP - São Paulo State University
dc.description.affiliationCenpes Petróleo Brasileiro S.A. - Petrobras
dc.description.affiliationUnespDepartment of Statistics Applied Math. and Computing UNESP - São Paulo State University
dc.description.affiliationUnespSchool of Sciences UNESP - São Paulo State University
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipPetrobras
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2013/07375-0
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdPetrobras: 2017/00285-6
dc.description.sponsorshipIdFAPESP: 2017/25908-6
dc.description.sponsorshipIdFAPESP: 2018/15597-6
dc.description.sponsorshipIdFAPESP: 2018/21934-5
dc.description.sponsorshipIdFAPESP: 2019/02205-5
dc.description.sponsorshipIdFAPESP: 2019/07825-1
dc.description.sponsorshipIdCNPq: 307066/2017-7
dc.description.sponsorshipIdCNPq: 308194/2017-9
dc.description.sponsorshipIdCNPq: 427968/2018-6
dc.format.extent404-412
dc.identifier.citationVISIGRAPP 2020 - Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, v. 5, p. 404-412.
dc.identifier.scopus2-s2.0-85083515716
dc.identifier.urihttp://hdl.handle.net/11449/201699
dc.language.isoeng
dc.relation.ispartofVISIGRAPP 2020 - Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications
dc.sourceScopus
dc.subjectAnomaly Detection
dc.subjectClustering
dc.subjectUnsupervised Manifold Learning
dc.subjectVideo Surveillance
dc.titleManifold learning-based clustering approach applied to anomaly detection in surveillance videosen
dc.typeTrabalho apresentado em evento
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claropt
unesp.departmentComputação - FCEstatística, Matemática Aplicada e Computação - IGCEpt

Arquivos