Publicação: Manifold learning-based clustering approach applied to anomaly detection in surveillance videos
dc.contributor.author | Lopes, Leonardo Tadeu [UNESP] | |
dc.contributor.author | Valem, Lucas Pascotti [UNESP] | |
dc.contributor.author | Guimarães Pedronette, Daniel Carlos [UNESP] | |
dc.contributor.author | Guilherme, Ivan Rizzo [UNESP] | |
dc.contributor.author | Papa, João Paulo [UNESP] | |
dc.contributor.author | Silva Santana, Marcos Cleison [UNESP] | |
dc.contributor.author | Colombo, Danilo | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Petróleo Brasileiro S.A. - Petrobras | |
dc.date.accessioned | 2020-12-12T02:39:33Z | |
dc.date.available | 2020-12-12T02:39:33Z | |
dc.date.issued | 2020-01-01 | |
dc.description.abstract | The huge increase in the amount of multimedia data available and the pressing need for organizing them in different categories, especially in scenarios where there are no labels available, makes data clustering an essential task in different scenarios. In this work, we present a novel clustering method based on an unsupervised manifold learning algorithm, in which a more effective similarity measure is computed by the manifold learning and used for clustering purposes. The proposed approach is applied to anomaly detection in videos and used in combination with different background segmentation methods to improve their effectiveness. An experimental evaluation is conducted on three different image datasets and one video dataset. The obtained results indicate superior accuracy in most clustering tasks when compared to the baselines. Results also demonstrate that the clustering step can improve the results of background subtraction approaches in the majority of cases. | en |
dc.description.affiliation | Department of Statistics Applied Math. and Computing UNESP - São Paulo State University | |
dc.description.affiliation | School of Sciences UNESP - São Paulo State University | |
dc.description.affiliation | Cenpes Petróleo Brasileiro S.A. - Petrobras | |
dc.description.affiliationUnesp | Department of Statistics Applied Math. and Computing UNESP - São Paulo State University | |
dc.description.affiliationUnesp | School of Sciences UNESP - São Paulo State University | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Petrobras | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorshipId | FAPESP: 2013/07375-0 | |
dc.description.sponsorshipId | FAPESP: 2014/12236-1 | |
dc.description.sponsorshipId | Petrobras: 2017/00285-6 | |
dc.description.sponsorshipId | FAPESP: 2017/25908-6 | |
dc.description.sponsorshipId | FAPESP: 2018/15597-6 | |
dc.description.sponsorshipId | FAPESP: 2018/21934-5 | |
dc.description.sponsorshipId | FAPESP: 2019/02205-5 | |
dc.description.sponsorshipId | FAPESP: 2019/07825-1 | |
dc.description.sponsorshipId | CNPq: 307066/2017-7 | |
dc.description.sponsorshipId | CNPq: 308194/2017-9 | |
dc.description.sponsorshipId | CNPq: 427968/2018-6 | |
dc.format.extent | 404-412 | |
dc.identifier.citation | VISIGRAPP 2020 - Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, v. 5, p. 404-412. | |
dc.identifier.scopus | 2-s2.0-85083515716 | |
dc.identifier.uri | http://hdl.handle.net/11449/201699 | |
dc.language.iso | eng | |
dc.relation.ispartof | VISIGRAPP 2020 - Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications | |
dc.source | Scopus | |
dc.subject | Anomaly Detection | |
dc.subject | Clustering | |
dc.subject | Unsupervised Manifold Learning | |
dc.subject | Video Surveillance | |
dc.title | Manifold learning-based clustering approach applied to anomaly detection in surveillance videos | en |
dc.type | Trabalho apresentado em evento | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências, Bauru | pt |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claro | pt |
unesp.department | Computação - FCEstatística, Matemática Aplicada e Computação - IGCE | pt |