Percolation Images: Fractal Geometry Features for Brain Tumor Classification
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Capítulo de livro
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
Brain tumor detection is crucial for clinical diagnosis and efficient therapy. In this work, we propose a hybrid approach for brain tumor classification based on both fractal geometry features and deep learning. In our proposed framework, we adopt the concept of fractal geometry to generate a “percolation” image with the aim of highlighting important spatial properties in brain images. Then both the original and the percolation images are provided as input to a convolutional neural network to detect the tumor. Extensive experiments, carried out on a well-known benchmark dataset, indicate that using percolation images can help the system perform better.
Descrição
Palavras-chave
Brain tumors, Classification ensemble, Deep learning, Feature representations, Fractal features
Idioma
Inglês
Citação
Advances in Neurobiology, v. 36, p. 557-570.




