Logo do repositório

Percolation Images: Fractal Geometry Features for Brain Tumor Classification

dc.contributor.authorLumini, Alessandra
dc.contributor.authorRoberto, Guilherme Freire
dc.contributor.authorNeves, Leandro Alves [UNESP]
dc.contributor.authorMartins, Alessandro Santana
dc.contributor.authordo Nascimento, Marcelo Zanchetta
dc.contributor.institutionUniversity of Bologna
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionFederal Institute of Triângulo Mineiro (IFTM)
dc.contributor.institutionUniversidade Federal de Uberlândia (UFU)
dc.date.accessioned2025-04-29T20:11:28Z
dc.date.issued2024-01-01
dc.description.abstractBrain tumor detection is crucial for clinical diagnosis and efficient therapy. In this work, we propose a hybrid approach for brain tumor classification based on both fractal geometry features and deep learning. In our proposed framework, we adopt the concept of fractal geometry to generate a “percolation” image with the aim of highlighting important spatial properties in brain images. Then both the original and the percolation images are provided as input to a convolutional neural network to detect the tumor. Extensive experiments, carried out on a well-known benchmark dataset, indicate that using percolation images can help the system perform better.en
dc.description.affiliationDepartment of Computer Science and Engineering University of Bologna, FC
dc.description.affiliationInstitute of Mathematics and Computer Science (ICMC) University of São Paulo (USP), SP
dc.description.affiliationDepartment of Computer Science and Statistics (DCCE) São Paulo State University (UNESP), SP
dc.description.affiliationFederal Institute of Triângulo Mineiro (IFTM), MG
dc.description.affiliationFaculty of Computation (FACOM) Federal University of Uberlândia (UFU), MG
dc.description.affiliationUnespDepartment of Computer Science and Statistics (DCCE) São Paulo State University (UNESP), SP
dc.format.extent557-570
dc.identifierhttp://dx.doi.org/10.1007/978-3-031-47606-8_29
dc.identifier.citationAdvances in Neurobiology, v. 36, p. 557-570.
dc.identifier.doi10.1007/978-3-031-47606-8_29
dc.identifier.issn2190-5223
dc.identifier.issn2190-5215
dc.identifier.scopus2-s2.0-85187787046
dc.identifier.urihttps://hdl.handle.net/11449/308182
dc.language.isoeng
dc.relation.ispartofAdvances in Neurobiology
dc.sourceScopus
dc.subjectBrain tumors
dc.subjectClassification ensemble
dc.subjectDeep learning
dc.subjectFeature representations
dc.subjectFractal features
dc.titlePercolation Images: Fractal Geometry Features for Brain Tumor Classificationen
dc.typeCapítulo de livropt
dspace.entity.typePublication

Arquivos

Coleções