Percolation Images: Fractal Geometry Features for Brain Tumor Classification
| dc.contributor.author | Lumini, Alessandra | |
| dc.contributor.author | Roberto, Guilherme Freire | |
| dc.contributor.author | Neves, Leandro Alves [UNESP] | |
| dc.contributor.author | Martins, Alessandro Santana | |
| dc.contributor.author | do Nascimento, Marcelo Zanchetta | |
| dc.contributor.institution | University of Bologna | |
| dc.contributor.institution | Universidade de São Paulo (USP) | |
| dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
| dc.contributor.institution | Federal Institute of Triângulo Mineiro (IFTM) | |
| dc.contributor.institution | Universidade Federal de Uberlândia (UFU) | |
| dc.date.accessioned | 2025-04-29T20:11:28Z | |
| dc.date.issued | 2024-01-01 | |
| dc.description.abstract | Brain tumor detection is crucial for clinical diagnosis and efficient therapy. In this work, we propose a hybrid approach for brain tumor classification based on both fractal geometry features and deep learning. In our proposed framework, we adopt the concept of fractal geometry to generate a “percolation” image with the aim of highlighting important spatial properties in brain images. Then both the original and the percolation images are provided as input to a convolutional neural network to detect the tumor. Extensive experiments, carried out on a well-known benchmark dataset, indicate that using percolation images can help the system perform better. | en |
| dc.description.affiliation | Department of Computer Science and Engineering University of Bologna, FC | |
| dc.description.affiliation | Institute of Mathematics and Computer Science (ICMC) University of São Paulo (USP), SP | |
| dc.description.affiliation | Department of Computer Science and Statistics (DCCE) São Paulo State University (UNESP), SP | |
| dc.description.affiliation | Federal Institute of Triângulo Mineiro (IFTM), MG | |
| dc.description.affiliation | Faculty of Computation (FACOM) Federal University of Uberlândia (UFU), MG | |
| dc.description.affiliationUnesp | Department of Computer Science and Statistics (DCCE) São Paulo State University (UNESP), SP | |
| dc.format.extent | 557-570 | |
| dc.identifier | http://dx.doi.org/10.1007/978-3-031-47606-8_29 | |
| dc.identifier.citation | Advances in Neurobiology, v. 36, p. 557-570. | |
| dc.identifier.doi | 10.1007/978-3-031-47606-8_29 | |
| dc.identifier.issn | 2190-5223 | |
| dc.identifier.issn | 2190-5215 | |
| dc.identifier.scopus | 2-s2.0-85187787046 | |
| dc.identifier.uri | https://hdl.handle.net/11449/308182 | |
| dc.language.iso | eng | |
| dc.relation.ispartof | Advances in Neurobiology | |
| dc.source | Scopus | |
| dc.subject | Brain tumors | |
| dc.subject | Classification ensemble | |
| dc.subject | Deep learning | |
| dc.subject | Feature representations | |
| dc.subject | Fractal features | |
| dc.title | Percolation Images: Fractal Geometry Features for Brain Tumor Classification | en |
| dc.type | Capítulo de livro | pt |
| dspace.entity.type | Publication |
