Logotipo do repositório
 

Publicação:
Genomic predictions combining SNP markers and copy number variations in Nellore cattle

dc.contributor.authorHay, El Hamidi A.
dc.contributor.authorUtsunomiya, Yuri T. [UNESP]
dc.contributor.authorXu, Lingyang
dc.contributor.authorZhou, Yang
dc.contributor.authorNeves, Haroldo H.R. [UNESP]
dc.contributor.authorCarvalheiro, Roberto [UNESP]
dc.contributor.authorBickhart, Derek M.
dc.contributor.authorMa, Li
dc.contributor.authorGarcia, Jose Fernando [UNESP]
dc.contributor.authorLiu, George E.
dc.contributor.institutionUSDA Agricultural Research Service
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionInstitute of Animal Science
dc.contributor.institutionCollege of Animal Science and Technology
dc.contributor.institutionUSDA-ARS
dc.contributor.institutionUniversity of Maryland
dc.date.accessioned2018-12-11T17:20:41Z
dc.date.available2018-12-11T17:20:41Z
dc.date.issued2018-06-05
dc.description.abstractBackground: Due to the advancement in high throughput technology, single nucleotide polymorphism (SNP) is routinely being incorporated along with phenotypic information into genetic evaluation. However, this approach often cannot achieve high accuracy for some complex traits. It is possible that SNP markers are not sufficient to predict these traits due to the missing heritability caused by other genetic variations such as microsatellite and copy number variation (CNV), which have been shown to affect disease and complex traits in humans and other species. Results: In this study, CNVs were included in a SNP based genomic selection framework. A Nellore cattle dataset consisting of 2230 animals genotyped on BovineHD SNP array was used, and 9 weight and carcass traits were analyzed. A total of six models were implemented and compared based on their prediction accuracy. For comparison, three models including only SNPs were implemented: 1) BayesA model, 2) Bayesian mixture model (BayesB), and 3) a GBLUP model without polygenic effects. The other three models incorporating both SNP and CNV included 4) a Bayesian model similar to BayesA (BayesA+CNV), 5) a Bayesian mixture model (BayesB+CNV), and 6) GBLUP with CNVs modeled as a covariable (GBLUP+CNV). Prediction accuracies were assessed based on Pearson's correlation between de-regressed EBVs (dEBVs) and direct genomic values (DGVs) in the validation dataset. For BayesA, BayesB and GBLUP, accuracy ranged from 0.12 to 0.62 across the nine traits. A minimal increase in prediction accuracy for some traits was noticed when including CNVs in the model (BayesA+CNV, BayesB+CNV, GBLUP+CNV). Conclusions: This study presents the first genomic prediction study integrating CNVs and SNPs in livestock. Combining CNV and SNP marker information proved to be beneficial for genomic prediction of some traits in Nellore cattle.en
dc.description.affiliationFort Keogh Livestock and Range Research Laboratory USDA Agricultural Research Service
dc.description.affiliationUNESP - Univ Estadual Paulista Departamento de Medicina Veterinária Preventiva e Reprodução Animal Faculdade de Ciências Agrárias e Veterinárias
dc.description.affiliationChinese Academy of Agricultural Science Institute of Animal Science
dc.description.affiliationNorthwest A and F University Shaanxi Key Laboratory of Agricultural Molecular Biology College of Animal Science and Technology
dc.description.affiliationFaculdade de Ciências Agrárias e Veterinárias UNESP - Univ Estadual Paulista Departamento de Zootecnia
dc.description.affiliationAnimal Genomics and Improvement Laboratory BARC USDA-ARS
dc.description.affiliationUniversity of Maryland Department of Animal and Avian Sciences
dc.description.affiliationFaculdade de Medicina Veterinária de Araçatuba UNESP - Univ Estadual Paulista Departamento de Apoio Produção e Saúde Animal
dc.description.affiliationUnespUNESP - Univ Estadual Paulista Departamento de Medicina Veterinária Preventiva e Reprodução Animal Faculdade de Ciências Agrárias e Veterinárias
dc.description.affiliationUnespFaculdade de Ciências Agrárias e Veterinárias UNESP - Univ Estadual Paulista Departamento de Zootecnia
dc.description.affiliationUnespFaculdade de Medicina Veterinária de Araçatuba UNESP - Univ Estadual Paulista Departamento de Apoio Produção e Saúde Animal
dc.identifierhttp://dx.doi.org/10.1186/s12864-018-4787-6
dc.identifier.citationBMC Genomics, v. 19, n. 1, 2018.
dc.identifier.doi10.1186/s12864-018-4787-6
dc.identifier.file2-s2.0-85048114568.pdf
dc.identifier.issn1471-2164
dc.identifier.scopus2-s2.0-85048114568
dc.identifier.urihttp://hdl.handle.net/11449/176405
dc.language.isoeng
dc.relation.ispartofBMC Genomics
dc.relation.ispartofsjr2,110
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectCNV
dc.subjectComplex trait
dc.subjectGenomic selection
dc.subjectNellore cattle
dc.subjectSNP
dc.titleGenomic predictions combining SNP markers and copy number variations in Nellore cattleen
dc.typeArtigo
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Medicina Veterinária, Araçatubapt
unesp.departmentMedicina Veterinária Preventiva e Reprodução Animal - FCAVpt
unesp.departmentZootecnia - FCAVpt
unesp.departmentApoio, Produção e Saúde Animal - FMVApt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-85048114568.pdf
Tamanho:
446.59 KB
Formato:
Adobe Portable Document Format
Descrição: