Publicação: Parkinson's Disease Identification through Deep Optimum-Path Forest Clustering
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Trabalho apresentado em evento
Direito de acesso
Acesso aberto

Resumo
Approximately 50,000 to 60,000 new cases of Parkinson's disease (PD) are diagnosed yearly. Despite being non-lethal, PD shortens life expectancy of the ones affected with such disease. As such, researchers from different fields of study have put great effort in order to develop methods aiming the identification of PD in its early stages. This work uses handwriting dynamics data acquired by a series of tasks and proposes the application of a deep-driven graph-based clustering algorithm known as Optimum-Path Forest to learn a dictionary-like representation of each individual in order to automatic identify Parkinson's disease. Experimental results have shown promising results, with results comparable to some state-of-the-art approaches in the literature.
Descrição
Palavras-chave
Handwriting Dynamics, Optimum-Path Forest, Parkinson's disease
Idioma
Inglês
Como citar
Proceedings - 30th Conference on Graphics, Patterns and Images, SIBGRAPI 2017, p. 163-169.