Logotipo do repositório
 

Publicação:
Parkinson's Disease Identification through Deep Optimum-Path Forest Clustering

dc.contributor.authorAfonso, Luis Claudio Sugi
dc.contributor.authorPereira, Clayton Reginaldo
dc.contributor.authorWeber, Silke Anna Theresa [UNESP]
dc.contributor.authorHook, Christian
dc.contributor.authorPapa, Joao Paulo [UNESP]
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionFakultät Informatik/Mathematik
dc.date.accessioned2018-12-11T17:35:28Z
dc.date.available2018-12-11T17:35:28Z
dc.date.issued2017-11-03
dc.description.abstractApproximately 50,000 to 60,000 new cases of Parkinson's disease (PD) are diagnosed yearly. Despite being non-lethal, PD shortens life expectancy of the ones affected with such disease. As such, researchers from different fields of study have put great effort in order to develop methods aiming the identification of PD in its early stages. This work uses handwriting dynamics data acquired by a series of tasks and proposes the application of a deep-driven graph-based clustering algorithm known as Optimum-Path Forest to learn a dictionary-like representation of each individual in order to automatic identify Parkinson's disease. Experimental results have shown promising results, with results comparable to some state-of-the-art approaches in the literature.en
dc.description.affiliationUFSCar Federal University of São Carlos Department of Computing
dc.description.affiliationUNESP São Paulo State University Medical School
dc.description.affiliationOstbayerische Tech. Hochschule Fakultät Informatik/Mathematik
dc.description.affiliationUNESP São Paulo State University School of Sciences
dc.description.affiliationUnespUNESP São Paulo State University Medical School
dc.description.affiliationUnespUNESP São Paulo State University School of Sciences
dc.format.extent163-169
dc.identifierhttp://dx.doi.org/10.1109/SIBGRAPI.2017.28
dc.identifier.citationProceedings - 30th Conference on Graphics, Patterns and Images, SIBGRAPI 2017, p. 163-169.
dc.identifier.doi10.1109/SIBGRAPI.2017.28
dc.identifier.scopus2-s2.0-85040628693
dc.identifier.urihttp://hdl.handle.net/11449/179509
dc.language.isoeng
dc.relation.ispartofProceedings - 30th Conference on Graphics, Patterns and Images, SIBGRAPI 2017
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectHandwriting Dynamics
dc.subjectOptimum-Path Forest
dc.subjectParkinson's disease
dc.titleParkinson's Disease Identification through Deep Optimum-Path Forest Clusteringen
dc.typeTrabalho apresentado em evento
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos