Publicação: A fast approach for unsupervised karst feature identification using GPU
Carregando...
Arquivos
Data
2018-10-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso aberto

Resumo
Among the geological features, karst is the one that has received special attention in oil and gas exploration for being a strong indicator of the potential existence of hydrocarbon reservoirs. The integration of automatic pattern recognition methods and Graphics Processing Units (GPU) provides a powerful tool to help geological interpretation of seismic data. In order to provide insightful information for interpreters, this work investigates the usage of GPUs in addition to image segmentation by means of unsupervised classification for the identification of karst features in 3D seismic data. For this purpose, an implementation of the robust Self-Organizing Map for GPUs (SOM/GPU) is provided, and a comparison against a Central Processing Unit (CPU)-based SOM (SOM/CPU) is performed to assess the speeding-up provided by GPU. Experiments have shown promising results for geological interpretation using seismic data.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Computers and Geosciences, v. 119, p. 1-8.