Publicação: A fast approach for unsupervised karst feature identification using GPU
dc.contributor.author | Afonso, Luis C.S. | |
dc.contributor.author | Basso, Mateus | |
dc.contributor.author | Kuroda, Michelle C. | |
dc.contributor.author | Vidal, Alexandre C. | |
dc.contributor.author | Papa, João P. [UNESP] | |
dc.contributor.institution | Universidade Federal de São Carlos (UFSCar) | |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2018-12-11T17:37:29Z | |
dc.date.available | 2018-12-11T17:37:29Z | |
dc.date.issued | 2018-10-01 | |
dc.description.abstract | Among the geological features, karst is the one that has received special attention in oil and gas exploration for being a strong indicator of the potential existence of hydrocarbon reservoirs. The integration of automatic pattern recognition methods and Graphics Processing Units (GPU) provides a powerful tool to help geological interpretation of seismic data. In order to provide insightful information for interpreters, this work investigates the usage of GPUs in addition to image segmentation by means of unsupervised classification for the identification of karst features in 3D seismic data. For this purpose, an implementation of the robust Self-Organizing Map for GPUs (SOM/GPU) is provided, and a comparison against a Central Processing Unit (CPU)-based SOM (SOM/CPU) is performed to assess the speeding-up provided by GPU. Experiments have shown promising results for geological interpretation using seismic data. | en |
dc.description.affiliation | UFSCar - Federal University of São Carlos Department of Computing | |
dc.description.affiliation | UNICAMP - University of Campinas Institute of Geosciences | |
dc.description.affiliation | UNESP - São Paulo State University School of Sciences | |
dc.description.affiliationUnesp | UNESP - São Paulo State University School of Sciences | |
dc.description.sponsorship | Statoil | |
dc.format.extent | 1-8 | |
dc.identifier | http://dx.doi.org/10.1016/j.cageo.2018.06.004 | |
dc.identifier.citation | Computers and Geosciences, v. 119, p. 1-8. | |
dc.identifier.doi | 10.1016/j.cageo.2018.06.004 | |
dc.identifier.file | 2-s2.0-85048761532.pdf | |
dc.identifier.issn | 0098-3004 | |
dc.identifier.scopus | 2-s2.0-85048761532 | |
dc.identifier.uri | http://hdl.handle.net/11449/179968 | |
dc.language.iso | eng | |
dc.relation.ispartof | Computers and Geosciences | |
dc.relation.ispartofsjr | 1,350 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Scopus | |
dc.subject | Campos basin | |
dc.subject | Graphics processing unit | |
dc.subject | Paleokarst | |
dc.subject | Self-organizing map | |
dc.title | A fast approach for unsupervised karst feature identification using GPU | en |
dc.type | Artigo | |
dspace.entity.type | Publication | |
unesp.author.orcid | 0000-0003-1383-420X[2] | |
unesp.author.orcid | 0000-0002-6494-7514[5] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências, Bauru | pt |
unesp.department | Computação - FC | pt |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- 2-s2.0-85048761532.pdf
- Tamanho:
- 2.8 MB
- Formato:
- Adobe Portable Document Format
- Descrição: