Logotipo do repositório
 

Publicação:
A fast approach for unsupervised karst feature identification using GPU

dc.contributor.authorAfonso, Luis C.S.
dc.contributor.authorBasso, Mateus
dc.contributor.authorKuroda, Michelle C.
dc.contributor.authorVidal, Alexandre C.
dc.contributor.authorPapa, João P. [UNESP]
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-12-11T17:37:29Z
dc.date.available2018-12-11T17:37:29Z
dc.date.issued2018-10-01
dc.description.abstractAmong the geological features, karst is the one that has received special attention in oil and gas exploration for being a strong indicator of the potential existence of hydrocarbon reservoirs. The integration of automatic pattern recognition methods and Graphics Processing Units (GPU) provides a powerful tool to help geological interpretation of seismic data. In order to provide insightful information for interpreters, this work investigates the usage of GPUs in addition to image segmentation by means of unsupervised classification for the identification of karst features in 3D seismic data. For this purpose, an implementation of the robust Self-Organizing Map for GPUs (SOM/GPU) is provided, and a comparison against a Central Processing Unit (CPU)-based SOM (SOM/CPU) is performed to assess the speeding-up provided by GPU. Experiments have shown promising results for geological interpretation using seismic data.en
dc.description.affiliationUFSCar - Federal University of São Carlos Department of Computing
dc.description.affiliationUNICAMP - University of Campinas Institute of Geosciences
dc.description.affiliationUNESP - São Paulo State University School of Sciences
dc.description.affiliationUnespUNESP - São Paulo State University School of Sciences
dc.description.sponsorshipStatoil
dc.format.extent1-8
dc.identifierhttp://dx.doi.org/10.1016/j.cageo.2018.06.004
dc.identifier.citationComputers and Geosciences, v. 119, p. 1-8.
dc.identifier.doi10.1016/j.cageo.2018.06.004
dc.identifier.file2-s2.0-85048761532.pdf
dc.identifier.issn0098-3004
dc.identifier.scopus2-s2.0-85048761532
dc.identifier.urihttp://hdl.handle.net/11449/179968
dc.language.isoeng
dc.relation.ispartofComputers and Geosciences
dc.relation.ispartofsjr1,350
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectCampos basin
dc.subjectGraphics processing unit
dc.subjectPaleokarst
dc.subjectSelf-organizing map
dc.titleA fast approach for unsupervised karst feature identification using GPUen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0003-1383-420X[2]
unesp.author.orcid0000-0002-6494-7514[5]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-85048761532.pdf
Tamanho:
2.8 MB
Formato:
Adobe Portable Document Format
Descrição: