Logotipo do repositório
 

Publicação:
AUTOMATICALLY DETECTING TEXTUAL CONTENT IN HIGH-RESOLUTION IMAGES

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

Classifying targets in satellite images is a nontrivial task which requires dealing with a large number of undesirable elements such as clouds, building shadows and other unexpected objects. Among these, a commonly found element refers to artificially inserted post-processing objects like textual content, as the added text usually takes the form of watermarks, sensor specifications, street and place location names, etc. Manually selecting text segments is tedious, time-consuming, and requires the familiarity with image editing tools to precisely delineate these writing areas. Therefore, in this paper, a new automatic approach for detecting textual elements in satellite images is presented. Our approach combines cartoon-texture decomposition, thresholding-based rules, morphological operations, and connected component analysis into a fully automated and concise framework. Experiments on real satellite images and comparisons against well-established text detection methods demonstrate the high accuracy and low false-positive rate achieved by our approach when detecting textual content.

Descrição

Palavras-chave

Remote sensing images, Text detection

Idioma

Inglês

Como citar

International Geoscience and Remote Sensing Symposium (IGARSS), v. 2021-July, p. 4204-4207.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação