Logotipo do repositório
 

Publicação:
AUTOMATICALLY DETECTING TEXTUAL CONTENT IN HIGH-RESOLUTION IMAGES

dc.contributor.authorBasso, Dayara [UNESP]
dc.contributor.authorColnago, Marilaine [UNESP]
dc.contributor.authorAzevedo, Samara
dc.contributor.authorNegri, Rogério G. [UNESP]
dc.contributor.authorCasaca, Wallace [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionNatural Resources Institute
dc.date.accessioned2022-04-28T19:51:33Z
dc.date.available2022-04-28T19:51:33Z
dc.date.issued2021-01-01
dc.description.abstractClassifying targets in satellite images is a nontrivial task which requires dealing with a large number of undesirable elements such as clouds, building shadows and other unexpected objects. Among these, a commonly found element refers to artificially inserted post-processing objects like textual content, as the added text usually takes the form of watermarks, sensor specifications, street and place location names, etc. Manually selecting text segments is tedious, time-consuming, and requires the familiarity with image editing tools to precisely delineate these writing areas. Therefore, in this paper, a new automatic approach for detecting textual elements in satellite images is presented. Our approach combines cartoon-texture decomposition, thresholding-based rules, morphological operations, and connected component analysis into a fully automated and concise framework. Experiments on real satellite images and comparisons against well-established text detection methods demonstrate the high accuracy and low false-positive rate achieved by our approach when detecting textual content.en
dc.description.affiliationSão Paulo State University (UNESP) Dept. of Energy Engineering
dc.description.affiliationFederal University of Itajubá (UNIFEI) Natural Resources Institute
dc.description.affiliationSão Paulo State University (UNESP) Dept. of Environmental Engineering, S. J. dos Campos
dc.description.affiliationUnespSão Paulo State University (UNESP) Dept. of Energy Engineering
dc.description.affiliationUnespSão Paulo State University (UNESP) Dept. of Environmental Engineering, S. J. dos Campos
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: #2013/07375-0
dc.description.sponsorshipIdFAPESP: #2018/01033-3
dc.description.sponsorshipIdFAPESP: #2018/06756-3
dc.format.extent4204-4207
dc.identifierhttp://dx.doi.org/10.1109/IGARSS47720.2021.9553189
dc.identifier.citationInternational Geoscience and Remote Sensing Symposium (IGARSS), v. 2021-July, p. 4204-4207.
dc.identifier.doi10.1109/IGARSS47720.2021.9553189
dc.identifier.scopus2-s2.0-85126017224
dc.identifier.urihttp://hdl.handle.net/11449/223593
dc.language.isoeng
dc.relation.ispartofInternational Geoscience and Remote Sensing Symposium (IGARSS)
dc.sourceScopus
dc.subjectRemote sensing images
dc.subjectText detection
dc.titleAUTOMATICALLY DETECTING TEXTUAL CONTENT IN HIGH-RESOLUTION IMAGESen
dc.typeTrabalho apresentado em eventopt
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, São José dos Campospt

Arquivos