Publicação: Região de deslize de sistemas suaves por partes
Carregando...
Arquivos
Data
Autores
Orientador
Silva, Paulo Ricardo da 

Panazzolo, Daniel Cantergiani
Coorientador
Pós-graduação
Matemática - IBILCE
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Estadual Paulista (Unesp)
Tipo
Tese de doutorado
Direito de acesso
Acesso aberto

Resumo
Resumo (português)
Neste trabalho, consideramos campos de vetores suaves por partes X definidos emRn\Σ, onde Σ é uma variedade de comutação com auto-interseção. Uma dupla regularização de X é uma família de dois parâmetros de campos vetoriais suaves Xε,η, ε,η > 0, satisfazendo que Xε,η converge uniformemente para X em cada subconjunto compacto de Rn\Σ quando ε,η → 0. Definimos a região de deslize na parte não regular de Σ como sendo o limite de variedades invariantes de Xε,η. Como a dupla regularização fornece um sistema slow-fast, a teoria GSP (Teoria da Perturbação Singular Geométrica) é a nossa principal ferramenta.
Resumo (inglês)
In this work we consider piecewise smooth vector fields X defined in Rn \Σ, where Σ is a self-intersecting switching manifold. A double regularization of X is a 2parameter family of smooth vector fields Xε.η, ε,η > 0, satisfying that Xε,η converges uniformly to X in each compact subset of Rn\Σ when ε,η → 0. We define the sliding region on the non regular part of Σ as a limit of invariant manifolds of Xε.η. Since the double regularization provides a slow–fast system, the GSP-theory (geometric singular perturbation theory) is our main tool.
Descrição
Palavras-chave
Sistemas dinâmicos por partes, Regiões de deslize, Teoria de Fenichel, Piecewise dynamical systems, Slide regions, Fenichel’s theory
Idioma
Português