Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

OPFsemble: An Ensemble Pruning Approach via Optimum-Path Forest

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

One of the main drawbacks of classification and machine learning algorithms is selecting the learning models that best fit the problem domain. A common approach to tackle this issue comprises ensemble learning, i.e., several different models are employed to solve a given task, and the output consists of a pool of these models' outcomes. Nevertheless, such an approach is computationally costly and demands a strategy to prune similar models and keep the variability in the results. A general solution comprises clustering algorithms, which, on the other hand, usually require prior knowledge of the problem to estimate the number of clusters. This paper proposes the OPFsemble, an Optimum-Path Forest (OPF) ensemble pruning approach that uses the unsupervised OPF to select the most representative classifiers while maintaining diversity. It also proposes five variants of pruning to select the most representative classifiers and combine the final predictions. The proposed approach is compared against several aggregation methods for the ensemble process. Experiments conducted over twelve datasets show the OPFsemble provides the best scores and even statistical similarity with the baseline ensemble approaches.

Descrição

Palavras-chave

Ensemble Model, Ensemble Pruning, Machine Learning, Optimum-Path Forest

Idioma

Inglês

Citação

International Conference on Systems, Signals, and Image Processing, v. 2023-June.

Itens relacionados

Financiadores

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso