Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

OPFsemble: An Ensemble Pruning Approach via Optimum-Path Forest

dc.contributor.authorJodas, Danilo Samuel [UNESP]
dc.contributor.authorPassos, Leandro Aparecido [UNESP]
dc.contributor.authorRodrigues, Douglas [UNESP]
dc.contributor.authorLucas, Thiago Jose [UNESP]
dc.contributor.authorDa Costa, Kelton Augusto Pontara [UNESP]
dc.contributor.authorPapa, Joao Paulo [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionInstitute for Technological Research
dc.date.accessioned2025-04-29T20:11:23Z
dc.date.issued2023-01-01
dc.description.abstractOne of the main drawbacks of classification and machine learning algorithms is selecting the learning models that best fit the problem domain. A common approach to tackle this issue comprises ensemble learning, i.e., several different models are employed to solve a given task, and the output consists of a pool of these models' outcomes. Nevertheless, such an approach is computationally costly and demands a strategy to prune similar models and keep the variability in the results. A general solution comprises clustering algorithms, which, on the other hand, usually require prior knowledge of the problem to estimate the number of clusters. This paper proposes the OPFsemble, an Optimum-Path Forest (OPF) ensemble pruning approach that uses the unsupervised OPF to select the most representative classifiers while maintaining diversity. It also proposes five variants of pruning to select the most representative classifiers and combine the final predictions. The proposed approach is compared against several aggregation methods for the ensemble process. Experiments conducted over twelve datasets show the OPFsemble provides the best scores and even statistical similarity with the baseline ensemble approaches.en
dc.description.affiliationSão Paulo State University, SP
dc.description.affiliationInstitute for Technological Research, SP
dc.description.affiliationUnespSão Paulo State University, SP
dc.identifierhttp://dx.doi.org/10.1109/IWSSIP58668.2023.10180288
dc.identifier.citationInternational Conference on Systems, Signals, and Image Processing, v. 2023-June.
dc.identifier.doi10.1109/IWSSIP58668.2023.10180288
dc.identifier.issn2157-8702
dc.identifier.issn2157-8672
dc.identifier.scopus2-s2.0-85166349541
dc.identifier.urihttps://hdl.handle.net/11449/308133
dc.language.isoeng
dc.relation.ispartofInternational Conference on Systems, Signals, and Image Processing
dc.sourceScopus
dc.subjectEnsemble Model
dc.subjectEnsemble Pruning
dc.subjectMachine Learning
dc.subjectOptimum-Path Forest
dc.titleOPFsemble: An Ensemble Pruning Approach via Optimum-Path Foresten
dc.typeTrabalho apresentado em eventopt
dspace.entity.typePublication

Arquivos

Coleções