SMS Spam Filtering Through Optimum-path Forest-based Classifiers
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Elsevier B.V.
Tipo
Trabalho apresentado em evento
Direito de acesso
Acesso aberto

Arquivos
Fontes externas
Fontes externas
Resumo
In the past years, SMS messages have shown to be a profitable revenue to the cell-phone industries, being one of the most used communication systems to date. However, this very same scenario has led spammers to concentrate their attentions into spreading spam messages through SMS, thus achieving some success due to the lack of proper tools to cope with this problem. In this paper, we introduced the Optimum-Path Forest classifier to the context of spam filtering in SMS messages, as well as we compared it against with some state-of-the-art supervised pattern recognition techniques. We have shown promising results with an user-friendly classifier, which requires minimum user interaction and less knowledge about the dataset.
Descrição
Palavras-chave
Optimum-Path Forest, SMS Spam
Idioma
Inglês
Citação
2015 Ieee 14th International Conference On Machine Learning And Applications (icmla). Amsterdam: Elsevier Science Bv, p. 133-137, 2015.




