Logo do repositório

SMS Spam Filtering Through Optimum-path Forest-based Classifiers

dc.contributor.authorFernandes, Dheny [UNESP]
dc.contributor.authorCosta, Kelton A. P. da [UNESP]
dc.contributor.authorAlmeida, Tiago A.
dc.contributor.authorPapa, Joao Paulo [UNESP]
dc.contributor.authorIEEE
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.date.accessioned2018-11-26T16:48:31Z
dc.date.available2018-11-26T16:48:31Z
dc.date.issued2015-01-01
dc.description.abstractIn the past years, SMS messages have shown to be a profitable revenue to the cell-phone industries, being one of the most used communication systems to date. However, this very same scenario has led spammers to concentrate their attentions into spreading spam messages through SMS, thus achieving some success due to the lack of proper tools to cope with this problem. In this paper, we introduced the Optimum-Path Forest classifier to the context of spam filtering in SMS messages, as well as we compared it against with some state-of-the-art supervised pattern recognition techniques. We have shown promising results with an user-friendly classifier, which requires minimum user interaction and less knowledge about the dataset.en
dc.description.affiliationSao Paulo State Univ, Dept Comp, Bauru, SP, Brazil
dc.description.affiliationUniv Fed Sao Carlos, Dept Comp Sci, Sorocaba, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp, Bauru, SP, Brazil
dc.format.extent133-137
dc.identifierhttp://dx.doi.org/10.1109/ICMLA.2015.71
dc.identifier.citation2015 Ieee 14th International Conference On Machine Learning And Applications (icmla). Amsterdam: Elsevier Science Bv, p. 133-137, 2015.
dc.identifier.doi10.1109/ICMLA.2015.71
dc.identifier.urihttp://hdl.handle.net/11449/161765
dc.identifier.wosWOS:000380483600022
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartof2015 Ieee 14th International Conference On Machine Learning And Applications (icmla)
dc.rights.accessRightsAcesso abertopt
dc.sourceWeb of Science
dc.subjectOptimum-Path Forest
dc.subjectSMS Spam
dc.titleSMS Spam Filtering Through Optimum-path Forest-based Classifiersen
dc.typeTrabalho apresentado em eventopt
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
relation.isDepartmentOfPublication872c0bbb-bf84-404e-9ca7-f87a0fe94e58
relation.isDepartmentOfPublication.latestForDiscovery872c0bbb-bf84-404e-9ca7-f87a0fe94e58
relation.isOrgUnitOfPublicationaef1f5df-a00f-45f4-b366-6926b097829b
relation.isOrgUnitOfPublication.latestForDiscoveryaef1f5df-a00f-45f4-b366-6926b097829b
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos