SMS Spam Filtering Through Optimum-path Forest-based Classifiers
| dc.contributor.author | Fernandes, Dheny [UNESP] | |
| dc.contributor.author | Costa, Kelton A. P. da [UNESP] | |
| dc.contributor.author | Almeida, Tiago A. | |
| dc.contributor.author | Papa, Joao Paulo [UNESP] | |
| dc.contributor.author | IEEE | |
| dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
| dc.contributor.institution | Universidade Federal de São Carlos (UFSCar) | |
| dc.date.accessioned | 2018-11-26T16:48:31Z | |
| dc.date.available | 2018-11-26T16:48:31Z | |
| dc.date.issued | 2015-01-01 | |
| dc.description.abstract | In the past years, SMS messages have shown to be a profitable revenue to the cell-phone industries, being one of the most used communication systems to date. However, this very same scenario has led spammers to concentrate their attentions into spreading spam messages through SMS, thus achieving some success due to the lack of proper tools to cope with this problem. In this paper, we introduced the Optimum-Path Forest classifier to the context of spam filtering in SMS messages, as well as we compared it against with some state-of-the-art supervised pattern recognition techniques. We have shown promising results with an user-friendly classifier, which requires minimum user interaction and less knowledge about the dataset. | en |
| dc.description.affiliation | Sao Paulo State Univ, Dept Comp, Bauru, SP, Brazil | |
| dc.description.affiliation | Univ Fed Sao Carlos, Dept Comp Sci, Sorocaba, SP, Brazil | |
| dc.description.affiliationUnesp | Sao Paulo State Univ, Dept Comp, Bauru, SP, Brazil | |
| dc.format.extent | 133-137 | |
| dc.identifier | http://dx.doi.org/10.1109/ICMLA.2015.71 | |
| dc.identifier.citation | 2015 Ieee 14th International Conference On Machine Learning And Applications (icmla). Amsterdam: Elsevier Science Bv, p. 133-137, 2015. | |
| dc.identifier.doi | 10.1109/ICMLA.2015.71 | |
| dc.identifier.uri | http://hdl.handle.net/11449/161765 | |
| dc.identifier.wos | WOS:000380483600022 | |
| dc.language.iso | eng | |
| dc.publisher | Elsevier B.V. | |
| dc.relation.ispartof | 2015 Ieee 14th International Conference On Machine Learning And Applications (icmla) | |
| dc.rights.accessRights | Acesso aberto | pt |
| dc.source | Web of Science | |
| dc.subject | Optimum-Path Forest | |
| dc.subject | SMS Spam | |
| dc.title | SMS Spam Filtering Through Optimum-path Forest-based Classifiers | en |
| dc.type | Trabalho apresentado em evento | pt |
| dcterms.license | http://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy | |
| dcterms.rightsHolder | Elsevier B.V. | |
| dspace.entity.type | Publication | |
| relation.isDepartmentOfPublication | 872c0bbb-bf84-404e-9ca7-f87a0fe94e58 | |
| relation.isDepartmentOfPublication.latestForDiscovery | 872c0bbb-bf84-404e-9ca7-f87a0fe94e58 | |
| relation.isOrgUnitOfPublication | aef1f5df-a00f-45f4-b366-6926b097829b | |
| relation.isOrgUnitOfPublication.latestForDiscovery | aef1f5df-a00f-45f4-b366-6926b097829b | |
| unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências, Bauru | pt |
| unesp.department | Computação - FC | pt |

