Logotipo do repositório
 

Publicação:
A Parallel Framework for HCC Detection in DCE-MRI Sequences with Wavelet-Based Description and SVM classification

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Assoc Computing Machinery

Tipo

Trabalho apresentado em evento

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

In this article, we propose a complete framework devoted to detect liver HCC (Hepato-Cellular Carcinoma) tumors within DCE-MRI (Dynamic Contrast Enhanced-MRI) sequences. Our system employs different phases of these hepatic image sequences (depending on time after contrast agent injection) to describe local patches with wavelet-based descriptors. By using a SVM (Support Vector Machine)-based classification, we are able to distinguish healthy patches from pathological ones. Moreover, thanks to a parallel image processing strategy, we are able to reduce significantly the running time so that our system may be utilized as a computer aided diagnosis tool in the future. Our experiments show that our contribution is an accurate system for HCC detection, with a small cohort of patients, but representing a high volume of image data to be processed. This work encourages us to conduct deeper researches for detecting complex HCC cases for larger patients cohorts.

Descrição

Palavras-chave

Medical image analysis, machine learning, DCE-MRI, liver, HCC, tumor detection, parallelization, wavelet image description

Idioma

Inglês

Como citar

33rd Annual Acm Symposium On Applied Computing. New York: Assoc Computing Machinery, p. 14-21, 2018.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação