Logotipo do repositório
 

Publicação:
A Parallel Framework for HCC Detection in DCE-MRI Sequences with Wavelet-Based Description and SVM classification

dc.contributor.authorPavan, Ana L. M. [UNESP]
dc.contributor.authorBenabdallah, Marwa
dc.contributor.authorLebre, Marie-Ange
dc.contributor.authorPina, Diana Rodrigues de
dc.contributor.authorJaziri, Faouzi
dc.contributor.authorVacavant, Antoine
dc.contributor.authorMtibaa, Achraf
dc.contributor.authorAli, Hawa Mohamed
dc.contributor.authorGrand-Brochier, Manuel
dc.contributor.authorRositi, Hugo
dc.contributor.authorMagnin, Benoit
dc.contributor.authorAbergel, Armand
dc.contributor.authorChabrot, Pascal
dc.contributor.authorAssoc Comp Machinery
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionENETcom
dc.contributor.institutionUniv Clermont Auvergne
dc.contributor.institutionDept Phys & Biophys
dc.contributor.institutionInst Pascal
dc.contributor.institutionMir Cl Lab
dc.contributor.institutionCHU
dc.date.accessioned2019-10-04T12:34:18Z
dc.date.available2019-10-04T12:34:18Z
dc.date.issued2018-01-01
dc.description.abstractIn this article, we propose a complete framework devoted to detect liver HCC (Hepato-Cellular Carcinoma) tumors within DCE-MRI (Dynamic Contrast Enhanced-MRI) sequences. Our system employs different phases of these hepatic image sequences (depending on time after contrast agent injection) to describe local patches with wavelet-based descriptors. By using a SVM (Support Vector Machine)-based classification, we are able to distinguish healthy patches from pathological ones. Moreover, thanks to a parallel image processing strategy, we are able to reduce significantly the running time so that our system may be utilized as a computer aided diagnosis tool in the future. Our experiments show that our contribution is an accurate system for HCC detection, with a small cohort of patients, but representing a high volume of image data to be processed. This work encourages us to conduct deeper researches for detecting complex HCC cases for larger patients cohorts.en
dc.description.affiliationSao Paulo State Univ, Dept Phys & Biophys, Botucatu, SP, Brazil
dc.description.affiliationENETcom, Mir Cl Lab, Sfax, Tunisia
dc.description.affiliationUniv Clermont Auvergne, Inst Pascal, Clermont Ferrand, France
dc.description.affiliationDept Phys & Biophys, Botucatu, SP, Brazil
dc.description.affiliationInst Pascal, Clermont Ferrand, France
dc.description.affiliationMir Cl Lab, Sfax, Tunisia
dc.description.affiliationCHU, Inst Pascal, Clermont Ferrand, France
dc.description.affiliationUnespSao Paulo State Univ, Dept Phys & Biophys, Botucatu, SP, Brazil
dc.format.extent14-21
dc.identifierhttp://dx.doi.org/10.1145/3167132.3167167
dc.identifier.citation33rd Annual Acm Symposium On Applied Computing. New York: Assoc Computing Machinery, p. 14-21, 2018.
dc.identifier.doi10.1145/3167132.3167167
dc.identifier.urihttp://hdl.handle.net/11449/185292
dc.identifier.wosWOS:000455180700003
dc.language.isoeng
dc.publisherAssoc Computing Machinery
dc.relation.ispartof33rd Annual Acm Symposium On Applied Computing
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectMedical image analysis
dc.subjectmachine learning
dc.subjectDCE-MRI
dc.subjectliver
dc.subjectHCC
dc.subjecttumor detection
dc.subjectparallelization
dc.subjectwavelet image description
dc.titleA Parallel Framework for HCC Detection in DCE-MRI Sequences with Wavelet-Based Description and SVM classificationen
dc.typeTrabalho apresentado em evento
dcterms.rightsHolderAssoc Computing Machinery
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Botucatupt
unesp.departmentFísica e Biofísica - IBBpt

Arquivos