Logotipo do repositório
 

Publicação:
Automatic Identification of Interictal Epileptiform Discharges with the Use of Complex Networks

dc.contributor.authorTomanik, Gustavo H. [UNESP]
dc.contributor.authorBetting, Luiz E. [UNESP]
dc.contributor.authorCampanharo, Andriana S. L. O. [UNESP]
dc.contributor.authorRojas, I
dc.contributor.authorJoya, G.
dc.contributor.authorCatala, A.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2020-12-10T19:38:36Z
dc.date.available2020-12-10T19:38:36Z
dc.date.issued2019-01-01
dc.description.abstractThe identification of Interictal Epileptiform Discharges (IEDs), which are characterized by spikes and waves in electroencephalographic (EEG) data, is highly beneficial to the automated detection and prediction of epileptic seizures. In this paper, a novel single-step approach for IEDs detection based on the complex network theory is proposed. Our main goal is to illustrate how the differences in dynamics in EEG signals from patients diagnosed with idiopathic generalized epilepsy are reflected in the topology of the corresponding networks. Based on various network metrics, namely, the strongly connected component, the shortest path length and the mean jump length, our results show that this method enables the discrimination between IEDs and free IEDs events. A decision about the presence of epileptiform activity in EEG signals was made based on the confusion matrix. An overall detection accuracy of 98.2% was achieved.en
dc.description.affiliationSao Paulo State Univ UNESP, Inst Biosci, Dept Biostat, Botucatu, SP, Brazil
dc.description.affiliationSao Paulo State Univ UNESP, Botucatu Med Sch, Inst Biosci, Dept Neurol Psychol & Psychiat, Botucatu, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ UNESP, Inst Biosci, Dept Biostat, Botucatu, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ UNESP, Botucatu Med Sch, Inst Biosci, Dept Neurol Psychol & Psychiat, Botucatu, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdFAPESP: 2015/222935
dc.description.sponsorshipIdFAPESP: 2017/09216-7
dc.description.sponsorshipIdFAPESP: 2018/02014-2
dc.description.sponsorshipIdFAPESP: 2016/17914-3
dc.description.sponsorshipIdFAPESP: 2018/25358-9
dc.description.sponsorshipIdCAPES: 001
dc.format.extent152-161
dc.identifierhttp://dx.doi.org/10.1007/978-3-030-20521-8_13
dc.identifier.citationAdvances In Computational Intelligence, Iwann 2019, Pt I. Cham: Springer International Publishing Ag, v. 11506, p. 152-161, 2019.
dc.identifier.doi10.1007/978-3-030-20521-8_13
dc.identifier.issn0302-9743
dc.identifier.urihttp://hdl.handle.net/11449/196249
dc.identifier.wosWOS:000490721600013
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofAdvances In Computational Intelligence, Iwann 2019, Pt I
dc.sourceWeb of Science
dc.subjectElectroencephalographic time series
dc.subjectInterictal Epileptiform Discharges
dc.subjectComplex networks
dc.subjectNetwork measures
dc.titleAutomatic Identification of Interictal Epileptiform Discharges with the Use of Complex Networksen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dcterms.rightsHolderSpringer
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Medicina, Botucatupt
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Botucatupt
unesp.departmentNeurologia, Psicologia e Psiquiatria - FMBpt
unesp.departmentBioestatística - IBBpt

Arquivos