Logotipo do repositório
 

Publicação:
Does Removing Pooling Layers from Convolutional Neural Networks Improve Results?

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

Due to their number of parameters, convolutional neural networks are known to take long training periods and extended inference time. Learning may take so much computational power that it requires a costly machine and, sometimes, weeks for training. In this context, there is a trend already in motion to replace convolutional pooling layers for a stride operation in the previous layer to save time. In this work, we evaluate the speedup of such an approach and how it trades off with accuracy loss in multiple computer vision domains, deep neural architectures, and datasets. The results showed significant acceleration with an almost negligible loss in accuracy, when any, which is a further indication that convolutional pooling on deep learning performs redundant calculations.

Descrição

Palavras-chave

Convolutional neural networks, Gait recognition, Optical character recognition, Pooling

Idioma

Inglês

Como citar

SN Computer Science, v. 1, n. 5, 2020.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação