Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Does Removing Pooling Layers from Convolutional Neural Networks Improve Results?

dc.contributor.authorSantos, Claudio Filipi Goncalves dos
dc.contributor.authorMoreira, Thierry Pinheiro [UNESP]
dc.contributor.authorColombo, Danilo
dc.contributor.authorPapa, João Paulo [UNESP]
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionPetrobras
dc.date.accessioned2022-05-01T11:23:36Z
dc.date.available2022-05-01T11:23:36Z
dc.date.issued2020-09-01
dc.description.abstractDue to their number of parameters, convolutional neural networks are known to take long training periods and extended inference time. Learning may take so much computational power that it requires a costly machine and, sometimes, weeks for training. In this context, there is a trend already in motion to replace convolutional pooling layers for a stride operation in the previous layer to save time. In this work, we evaluate the speedup of such an approach and how it trades off with accuracy loss in multiple computer vision domains, deep neural architectures, and datasets. The results showed significant acceleration with an almost negligible loss in accuracy, when any, which is a further indication that convolutional pooling on deep learning performs redundant calculations.en
dc.description.affiliationUFSCar Federal University of São Carlos
dc.description.affiliationUNESP State University of Sao Paulo
dc.description.affiliationCenpes Petróleo Brasileiro S.A. Petrobras, RJ
dc.description.affiliationUnespUNESP State University of Sao Paulo
dc.description.sponsorshipPetrobras
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdPetrobras: #2017/00285-6
dc.description.sponsorshipIdFAPESP: #2017/25908-6
dc.description.sponsorshipIdFAPESP: #2018/15597-6
dc.description.sponsorshipIdFAPESP: #2019/07665-4
dc.description.sponsorshipIdCNPq: #307066/2017-7
dc.description.sponsorshipIdCNPq: #427968/2018-6
dc.description.sponsorshipIdFAPESP: \#2013/07375-0
dc.description.sponsorshipIdFAPESP: \#2014/12236-1
dc.identifierhttp://dx.doi.org/10.1007/s42979-020-00295-9
dc.identifier.citationSN Computer Science, v. 1, n. 5, 2020.
dc.identifier.doi10.1007/s42979-020-00295-9
dc.identifier.issn2661-8907
dc.identifier.issn2662-995X
dc.identifier.scopus2-s2.0-85121264681
dc.identifier.urihttp://hdl.handle.net/11449/233900
dc.language.isoeng
dc.relation.ispartofSN Computer Science
dc.sourceScopus
dc.subjectConvolutional neural networks
dc.subjectGait recognition
dc.subjectOptical character recognition
dc.subjectPooling
dc.titleDoes Removing Pooling Layers from Convolutional Neural Networks Improve Results?en
dc.typeArtigopt
dspace.entity.typePublication
relation.isDepartmentOfPublication872c0bbb-bf84-404e-9ca7-f87a0fe94e58
relation.isDepartmentOfPublication.latestForDiscovery872c0bbb-bf84-404e-9ca7-f87a0fe94e58
relation.isOrgUnitOfPublicationaef1f5df-a00f-45f4-b366-6926b097829b
relation.isOrgUnitOfPublication.latestForDiscoveryaef1f5df-a00f-45f4-b366-6926b097829b
unesp.author.orcid0000-0001-6580-5959[1]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos