Logotipo do repositório
 

Publicação:
Propriedades de escala e cascatas de bifurcações em mapas unidimensionais discretos

dc.contributor.advisorOliveira, Juliano Antonio de [UNESP]
dc.contributor.authorMendonça, Hans Muller Junho de [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-05-16T19:28:23Z
dc.date.available2018-05-16T19:28:23Z
dc.date.issued2018-02-28
dc.description.abstractNeste trabalho estudamos o decaimento das órbitas para os pontos fixos em bifurcações distintas em mapeamentos unidimensionais não lineares discretos. Consideramos o mapa Gauss, analisamos o diagrama de órbitas e estudamos o decaimento das trajetórias para o ponto de equilíbrio nas bifurcações tangente e de duplicação de período. Encontramos analítica e numericamente o conjunto de expoentes críticos que descrevem propriedades de escala nas bifurcações e próximos delas. Estes expoentes caracterizam o tipo de bifurcação do problema. Estudamos, também, eventos chamados crises de fronteiras, que ocorrem a partir de determinado valor do parâmetro de controle $\nu$. Estendemos nossos estudos considerando o mapa Hassell e introduzimos uma perturbação no problema. Assim como no mapa Gauss, analisamos nestes sistemas o diagrama de órbitas, os decaimentos das trajetórias para os pontos fixos nas bifurcações transcríticas e investigamos analítica e numericamente para determinar os expoentes críticos destas bifurcações. Com o intuito de investigar os efeitos da perturbação paramétrica introduzida ao mapa Hassell, construímos e analisamos as trajetórias no espaço de parâmetros. Utilizamos, como ferramentas, as órbitas superestáveis e extremas. Nas duas classes de mapas (Gauss e Hassell), caracterizamos o caos via expoentes de Lyapunov. Mostramos, também que, quando obtidos os expoentes críticos e utilizando transformações de escalas apropriadas nos eixos coordenados, todas as curvas de decaimento para os pontos de equilíbrio se ajustaram em uma única curva, validando os expoentes.pt
dc.description.abstractIn this work we study the decay of the orbits to the xed points in di erent bifurcations of nonlinear discrete one-dimensional mappings. We consider the Gauss map and analyze the orbit diagram to study the convergence of the trajectories to the equilibrium point at the fold and ip bifurcation. We nd numerically and analytically the set of critical exponents that describe some scaling properties at the bifurcations and near them. These critical exponents can also characterize which types of bifurcations that arises from the problem in question. We also study particular events called boundary crisis that occur from above a speci c value of the control parameter . We continue the studies considering the Hassell map and its perturbed version. Just like in the Gauss map, we analyze the orbit diagrams within these systems, as well as the convergence of the orbits to the xed points at the transcritical bifurcations, while also investigating numerically and analytically to determine the speci c critical exponents of those bifurcations. With parametric perturbation added to the Hassell map, we build and analyze the trajectories on the parameter space. We apply, as tools, the superstable and extreme orbits. In the two classes of the maps (Gauss and Hassell), we quantify the chaos by Lyapunov exponents. After the critical exponents are obtained, using convenient scale transformations in the coordinate axes we show that all the curves of decay to the xed points are collapsed into a universal curve, thus validating the exponents.en
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2015/22062-3.
dc.identifier.aleph000901910
dc.identifier.capes33004137063P6
dc.identifier.urihttp://hdl.handle.net/11449/153986
dc.language.isopor
dc.publisherUniversidade Estadual Paulista (Unesp)
dc.rights.accessRightsAcesso aberto
dc.subjectMapas unidimensionaispt
dc.subjectPontos fixospt
dc.subjectExpoentes críticospt
dc.subjectLeis de escalapt
dc.subjectCrises de fronteiraspt
dc.subjectEspaço de parâmetropt
dc.subjectOne-dimensional mapsen
dc.subjectFixed pointsen
dc.subjectCritical exponentsen
dc.subjectScaling lawen
dc.subjectBoundary crisisen
dc.subjectParameter spaceen
dc.titlePropriedades de escala e cascatas de bifurcações em mapas unidimensionais discretospt
dc.title.alternativeScaling properties and bifurcation cascades in one-dimensional discrete mapsen
dc.typeDissertação de mestrado
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claropt
unesp.embargo12 meses após a data da defesapt
unesp.graduateProgramFísica - IGCEpt
unesp.knowledgeAreaFísica aplicadapt
unesp.researchAreaDinâmica não linear e caospt

Arquivos

Pacote Original

Agora exibindo 1 - 2 de 2
Carregando...
Imagem de Miniatura
Nome:
mendonca_hmj_me_rcla_par.pdf
Tamanho:
320.41 KB
Formato:
Adobe Portable Document Format
Descrição:
Carregando...
Imagem de Miniatura
Nome:
mendonca_hmj_me_rcla_int.pdf
Tamanho:
26.64 MB
Formato:
Adobe Portable Document Format
Descrição:

Licença do Pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
2.99 KB
Formato:
Item-specific license agreed upon to submission
Descrição: