Publicação: Machine learning quantum error correction codes: learning the toric code
Carregando...
Data
2018-12-14
Orientador
Aolita, Leandro
Coorientador
Pós-graduação
Física - IFT
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Estadual Paulista (Unesp)
Tipo
Dissertação de mestrado
Direito de acesso
Acesso aberto

Resumo
Resumo (português)
Usamos métodos de aprendizagem supervisionada para estudar a decodificação de erros em códigos tóricos de diferentes tamanhos. Estudamos múltiplos modelos de erro, e obtemos figuras da eficácia de decodificação como uma função da taxa de erro de um único qubit. Também comentamos como o tamanho das redes neurais decodificadoras e seu tempo de treinamento aumentam com o tamanho do código tórico.
Resumo (português)
We use supervised learning methods to study the error decoding in toric codes of different sizes. We study multiple error models, and obtain figures of the decoding efficacy as a function of the single qubit error rate. We also comment on how the size of the decoding neural networks and their training time scales with the size of the toric code.
Descrição
Idioma
Inglês