Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Data-driven Dirichlet sampling on manifolds for structural health monitoring

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

The practical limitation of applying machine learning to structural health monitoring (SHM) is the availability of sufficient experimental data for training. However, obtaining an extensive training database can be expensive or complicated. Incomplete datasets can lead to overfitting, incorrect classification, or poorly generalized results. Various approaches have been proposed to overcome this limitation, including data augmentation techniques based on numerical models or data-driven methods. This paper presents a novel data-driven strategy for improving feature-SHM classification, utilizing manifold sampling with a Dirichlet distribution. The proposed approach respects the underlying manifold structure of the original datasets of the features. Two examples illustrate the method’s application: the Z-24 bridge dataset and a three-story building structure dataset from the Los Alamos National Laboratory. In both cases, the technique efficiently generates samples with minimal computational effort, facilitating data augmentation to enhance the training of unsupervised and/or supervised methods for SHM purposes.

Descrição

Palavras-chave

Damage detection, Data augmentation, Data-driven, Dirichlet distribution, Sampling on manifolds

Idioma

Inglês

Citação

Journal of the Brazilian Society of Mechanical Sciences and Engineering, v. 46, n. 7, 2024.

Itens relacionados

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso