Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Data-driven Dirichlet sampling on manifolds for structural health monitoring

dc.contributor.authorda Silva, Samuel [UNESP]
dc.contributor.authorRitto, Thiago G.
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade Federal do Rio de Janeiro (UFRJ)
dc.date.accessioned2025-04-29T20:15:01Z
dc.date.issued2024-07-01
dc.description.abstractThe practical limitation of applying machine learning to structural health monitoring (SHM) is the availability of sufficient experimental data for training. However, obtaining an extensive training database can be expensive or complicated. Incomplete datasets can lead to overfitting, incorrect classification, or poorly generalized results. Various approaches have been proposed to overcome this limitation, including data augmentation techniques based on numerical models or data-driven methods. This paper presents a novel data-driven strategy for improving feature-SHM classification, utilizing manifold sampling with a Dirichlet distribution. The proposed approach respects the underlying manifold structure of the original datasets of the features. Two examples illustrate the method’s application: the Z-24 bridge dataset and a three-story building structure dataset from the Los Alamos National Laboratory. In both cases, the technique efficiently generates samples with minimal computational effort, facilitating data augmentation to enhance the training of unsupervised and/or supervised methods for SHM purposes.en
dc.description.affiliationDepartment of Mechanical Engineering Universidade Estadual Paulista (UNESP), SP
dc.description.affiliationDepartment of Mechanical Engineering Universidade Federal do Rio de Janeiro (UFRJ), RJ
dc.description.affiliationUnespDepartment of Mechanical Engineering Universidade Estadual Paulista (UNESP), SP
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdCNPq: 302378/2022-7
dc.description.sponsorshipIdCNPq: 306526/2019-0
dc.identifierhttp://dx.doi.org/10.1007/s40430-024-04986-9
dc.identifier.citationJournal of the Brazilian Society of Mechanical Sciences and Engineering, v. 46, n. 7, 2024.
dc.identifier.doi10.1007/s40430-024-04986-9
dc.identifier.issn1806-3691
dc.identifier.issn1678-5878
dc.identifier.scopus2-s2.0-85195363644
dc.identifier.urihttps://hdl.handle.net/11449/309289
dc.language.isoeng
dc.relation.ispartofJournal of the Brazilian Society of Mechanical Sciences and Engineering
dc.sourceScopus
dc.subjectDamage detection
dc.subjectData augmentation
dc.subjectData-driven
dc.subjectDirichlet distribution
dc.subjectSampling on manifolds
dc.titleData-driven Dirichlet sampling on manifolds for structural health monitoringen
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0001-6430-3746[1]

Arquivos

Coleções