Logotipo do repositório
 

Publicação:
Fast automatic microstructural segmentation of ferrous alloy samples using optimum-path forest

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

In this work we propose a novel automatic cast iron segmentation approach based on the Optimum-Path Forest classifier (OPF). Microscopic images from nodular, gray and malleable cast irons are segmented using OPF, and Support Vector Machines (SVM) with Radial Basis Function and SVM without kernel mapping. Results show accurate and fast segmented images, in which OPF outperformed SVMs. Our work is the first into applying OPF for automatic cast iron segmentation. © 2010 Springer-Verlag.

Descrição

Palavras-chave

Cast irons, Image segmentation, Materials science, Microstructural evaluation, Supervised classification, Ferrous alloys, Forest classifiers, Kernel mapping, Malleable cast iron, Micro-structural, Microscopic image, Radial basis functions, Segmented images, Damping, Digital image storage, Iron, Malleable iron castings, Radial basis function networks, Support vector machines, Cast iron

Idioma

Inglês

Como citar

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 6026 LNCS, p. 210-220.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação