Publicação: Fast automatic microstructural segmentation of ferrous alloy samples using optimum-path forest
dc.contributor.author | Papa, João Paulo [UNESP] | |
dc.contributor.author | De Albuquerque, Victor Hugo C. | |
dc.contributor.author | Falcão, Alexandre Xavier | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Technological Research Center | |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | |
dc.contributor.institution | Faculty of Engineering | |
dc.date.accessioned | 2014-05-27T11:24:41Z | |
dc.date.available | 2014-05-27T11:24:41Z | |
dc.date.issued | 2010-05-21 | |
dc.description.abstract | In this work we propose a novel automatic cast iron segmentation approach based on the Optimum-Path Forest classifier (OPF). Microscopic images from nodular, gray and malleable cast irons are segmented using OPF, and Support Vector Machines (SVM) with Radial Basis Function and SVM without kernel mapping. Results show accurate and fast segmented images, in which OPF outperformed SVMs. Our work is the first into applying OPF for automatic cast iron segmentation. © 2010 Springer-Verlag. | en |
dc.description.affiliation | São Paulo State University Computer Science Department, Bauru | |
dc.description.affiliation | University of Fortaleza Technological Research Center, Fortaleza | |
dc.description.affiliation | University of Campinas Institute of Computing, Campinas | |
dc.description.affiliation | University of Porto Faculty of Engineering, Porto | |
dc.description.affiliationUnesp | São Paulo State University Computer Science Department, Bauru | |
dc.format.extent | 210-220 | |
dc.identifier | http://dx.doi.org/10.1007/978-3-642-12712-0_19 | |
dc.identifier.citation | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 6026 LNCS, p. 210-220. | |
dc.identifier.doi | 10.1007/978-3-642-12712-0_19 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.issn | 1611-3349 | |
dc.identifier.lattes | 9039182932747194 | |
dc.identifier.scopus | 2-s2.0-77952364349 | |
dc.identifier.uri | http://hdl.handle.net/11449/71689 | |
dc.identifier.wos | WOS:000279020400019 | |
dc.language.iso | eng | |
dc.relation.ispartof | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | |
dc.relation.ispartofsjr | 0,295 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Scopus | |
dc.subject | Cast irons | |
dc.subject | Image segmentation | |
dc.subject | Materials science | |
dc.subject | Microstructural evaluation | |
dc.subject | Supervised classification | |
dc.subject | Ferrous alloys | |
dc.subject | Forest classifiers | |
dc.subject | Kernel mapping | |
dc.subject | Malleable cast iron | |
dc.subject | Micro-structural | |
dc.subject | Microscopic image | |
dc.subject | Radial basis functions | |
dc.subject | Segmented images | |
dc.subject | Damping | |
dc.subject | Digital image storage | |
dc.subject | Iron | |
dc.subject | Malleable iron castings | |
dc.subject | Radial basis function networks | |
dc.subject | Support vector machines | |
dc.subject | Cast iron | |
dc.title | Fast automatic microstructural segmentation of ferrous alloy samples using optimum-path forest | en |
dc.type | Trabalho apresentado em evento | |
dcterms.license | http://www.springer.com/open+access/authors+rights | |
dspace.entity.type | Publication | |
unesp.author.lattes | 9039182932747194 | |
unesp.author.orcid | 0000-0002-6494-7514[1] | |
unesp.author.orcid | 0000-0003-3886-4309[2] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências, Bauru | pt |
unesp.department | Computação - FC | pt |