Publicação:
Hurst exponent estimation of self-affine time series using quantile graphs

Carregando...
Imagem de Miniatura

Data

2016-02-15

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Elsevier B.V.

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

In the context of dynamical systems, time series analysis is frequently used to identify the underlying nature of a phenomenon of interest from a sequence of observations. For signals with a self-affine structure, like fractional Brownian motions (fBm), the Hurst exponent H is one of the key parameters. Here, the use of quantile graphs (QGs) for the estimation of H is proposed. A QG is generated by mapping the quantiles of a time series into nodes of a graph. H is then computed directly as the power-law scaling exponent of the mean jump length performed by a random walker on the QG, for different time differences between the time series data points. The QG method for estimating the Hurst exponent was applied to fBm with different H values. Comparison with the exact H values used to generate the motions showed an excellent agreement. For a given time series length, estimation error depends basically on the statistical framework used for determining the exponent of the power-law model. The QG method is numerically simple and has only one free parameter, Q, the number of quantiles/nodes. With a simple modification, it can be extended to the analysis of fractional Gaussian noises. (C) 2015 Elsevier B.V. All rights reserved.

Descrição

Idioma

Inglês

Como citar

Physica A-statistical Mechanics And Its Applications. Amsterdam: Elsevier Science Bv, v. 444, p. 43-48, 2016.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação