Publicação: Hurst exponent estimation of self-affine time series using quantile graphs
dc.contributor.author | Campanharo, Andriana S. L. O. [UNESP] | |
dc.contributor.author | Ramos, Fernando M. | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Inst Nacl Pesquisas Espaciais | |
dc.date.accessioned | 2018-11-26T16:18:59Z | |
dc.date.available | 2018-11-26T16:18:59Z | |
dc.date.issued | 2016-02-15 | |
dc.description.abstract | In the context of dynamical systems, time series analysis is frequently used to identify the underlying nature of a phenomenon of interest from a sequence of observations. For signals with a self-affine structure, like fractional Brownian motions (fBm), the Hurst exponent H is one of the key parameters. Here, the use of quantile graphs (QGs) for the estimation of H is proposed. A QG is generated by mapping the quantiles of a time series into nodes of a graph. H is then computed directly as the power-law scaling exponent of the mean jump length performed by a random walker on the QG, for different time differences between the time series data points. The QG method for estimating the Hurst exponent was applied to fBm with different H values. Comparison with the exact H values used to generate the motions showed an excellent agreement. For a given time series length, estimation error depends basically on the statistical framework used for determining the exponent of the power-law model. The QG method is numerically simple and has only one free parameter, Q, the number of quantiles/nodes. With a simple modification, it can be extended to the analysis of fractional Gaussian noises. (C) 2015 Elsevier B.V. All rights reserved. | en |
dc.description.affiliation | Univ Estadual Paulista, Inst Biociencias, Dept Bioestat, Botucatu, SP, Brazil | |
dc.description.affiliation | Inst Nacl Pesquisas Espaciais, Lab Comp & Matemat Aplicada, BR-12201 Sao Jose Dos Campos, SP, Brazil | |
dc.description.affiliationUnesp | Univ Estadual Paulista, Inst Biociencias, Dept Bioestat, Botucatu, SP, Brazil | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorshipId | FAPESP: 2014/05145-0 | |
dc.description.sponsorshipId | FAPESP: 2013/19905-3 | |
dc.description.sponsorshipId | CNPq: 501221/2012-3 | |
dc.description.sponsorshipId | CNPq: 303437/2012-0 | |
dc.format.extent | 43-48 | |
dc.identifier | http://dx.doi.org/10.1016/j.physa.2015.09.094 | |
dc.identifier.citation | Physica A-statistical Mechanics And Its Applications. Amsterdam: Elsevier Science Bv, v. 444, p. 43-48, 2016. | |
dc.identifier.doi | 10.1016/j.physa.2015.09.094 | |
dc.identifier.file | WOS000366785900005.pdf | |
dc.identifier.issn | 0378-4371 | |
dc.identifier.uri | http://hdl.handle.net/11449/161065 | |
dc.identifier.wos | WOS:000366785900005 | |
dc.language.iso | eng | |
dc.publisher | Elsevier B.V. | |
dc.relation.ispartof | Physica A-statistical Mechanics And Its Applications | |
dc.relation.ispartofsjr | 0,773 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Web of Science | |
dc.subject | Self-affine time series | |
dc.subject | Hurst exponent | |
dc.subject | Complex networks | |
dc.subject | Quantile graphs | |
dc.title | Hurst exponent estimation of self-affine time series using quantile graphs | en |
dc.type | Artigo | |
dcterms.license | http://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy | |
dcterms.rightsHolder | Elsevier B.V. | |
dspace.entity.type | Publication | |
unesp.author.lattes | 4947092280690606[1] | |
unesp.author.orcid | 0000-0002-0501-5303[1] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Biociências, Botucatu | pt |
unesp.department | Bioestatística - IBB | pt |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- WOS000366785900005.pdf
- Tamanho:
- 756.44 KB
- Formato:
- Adobe Portable Document Format
- Descrição: