Logotipo do repositório
 

Publicação:
Hurst exponent estimation of self-affine time series using quantile graphs

dc.contributor.authorCampanharo, Andriana S. L. O. [UNESP]
dc.contributor.authorRamos, Fernando M.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionInst Nacl Pesquisas Espaciais
dc.date.accessioned2018-11-26T16:18:59Z
dc.date.available2018-11-26T16:18:59Z
dc.date.issued2016-02-15
dc.description.abstractIn the context of dynamical systems, time series analysis is frequently used to identify the underlying nature of a phenomenon of interest from a sequence of observations. For signals with a self-affine structure, like fractional Brownian motions (fBm), the Hurst exponent H is one of the key parameters. Here, the use of quantile graphs (QGs) for the estimation of H is proposed. A QG is generated by mapping the quantiles of a time series into nodes of a graph. H is then computed directly as the power-law scaling exponent of the mean jump length performed by a random walker on the QG, for different time differences between the time series data points. The QG method for estimating the Hurst exponent was applied to fBm with different H values. Comparison with the exact H values used to generate the motions showed an excellent agreement. For a given time series length, estimation error depends basically on the statistical framework used for determining the exponent of the power-law model. The QG method is numerically simple and has only one free parameter, Q, the number of quantiles/nodes. With a simple modification, it can be extended to the analysis of fractional Gaussian noises. (C) 2015 Elsevier B.V. All rights reserved.en
dc.description.affiliationUniv Estadual Paulista, Inst Biociencias, Dept Bioestat, Botucatu, SP, Brazil
dc.description.affiliationInst Nacl Pesquisas Espaciais, Lab Comp & Matemat Aplicada, BR-12201 Sao Jose Dos Campos, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Inst Biociencias, Dept Bioestat, Botucatu, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2014/05145-0
dc.description.sponsorshipIdFAPESP: 2013/19905-3
dc.description.sponsorshipIdCNPq: 501221/2012-3
dc.description.sponsorshipIdCNPq: 303437/2012-0
dc.format.extent43-48
dc.identifierhttp://dx.doi.org/10.1016/j.physa.2015.09.094
dc.identifier.citationPhysica A-statistical Mechanics And Its Applications. Amsterdam: Elsevier Science Bv, v. 444, p. 43-48, 2016.
dc.identifier.doi10.1016/j.physa.2015.09.094
dc.identifier.fileWOS000366785900005.pdf
dc.identifier.issn0378-4371
dc.identifier.urihttp://hdl.handle.net/11449/161065
dc.identifier.wosWOS:000366785900005
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofPhysica A-statistical Mechanics And Its Applications
dc.relation.ispartofsjr0,773
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectSelf-affine time series
dc.subjectHurst exponent
dc.subjectComplex networks
dc.subjectQuantile graphs
dc.titleHurst exponent estimation of self-affine time series using quantile graphsen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
unesp.author.lattes4947092280690606[1]
unesp.author.orcid0000-0002-0501-5303[1]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Botucatupt
unesp.departmentBioestatística - IBBpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000366785900005.pdf
Tamanho:
756.44 KB
Formato:
Adobe Portable Document Format
Descrição: