Logotipo do repositório
 

Publicação:
Sobre os grupos de Gottlieb

Carregando...
Imagem de Miniatura

Orientador

Melo, Thiago de

Coorientador

Pós-graduação

Matemática - IBILCE

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Estadual Paulista (Unesp)

Tipo

Dissertação de mestrado

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Resumo (português)

O objetivo deste trabalho é estudar grande parte do artigo [6], no qual Gottlieb define o subgrupo G(X, x_0) de pi_1(X, x_0) (em que X é um CW-complexo conexo por caminhos), posteriormente chamado de grupo de Gottlieb; o calculamos para diversos espaços, como as esferas, o toro, os espaços projetivos, a garrafa de Klein, etc.; posteriormente, estudamos o artigo [22] de Varadarajan, que generalizou o grupo de Gottlieb para um subconjunto G(A, X) de [A, X]_∗ . Por fim, calculamos G(S^n, S^n).

Resumo (inglês)

The goal of this work is to study partially the article [6], in which Gottlieb has defined a subgroup G(X, x_0) of pi_1(X, x_0) (where X is a path-connected CW-complex based at x_0), called "Gottlieb group" in the literature. This group is computed in this work for some spaces, namely the spheres, the torus, the projective spaces, and the Klein bottle. Further, a paper by Varadarajan [22] who has generalized Gottlieb group to a subset G(A, X) of [A, X]_* is studied. Finally, the groups G(S^n, S^n) is computed.

Descrição

Palavras-chave

Grupo de Gottlieb, Grupo de homotopia, Invariante de Hopf, Produto de Whitehead, Gottlieb group, Homotopy group, Hopf invariant, Whitehead product

Idioma

Português

Como citar

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação