Publicação: Existence and Profile of Ground-State Solutions to a 1-Laplacian Problem in RN
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Resumo
In this work we prove the existence of ground state solutions for the following class of problems {-Δ1u+(1+λV(x))u|u|=f(u),x∈RN,u∈BV(RN),where λ> 0 , Δ 1 denotes the 1-Laplacian operator which is formally defined by Δ1u=div(∇u/|∇u|), V: RN→ R is a potential satisfying some conditions and f: R→ R is a subcritical nonlinearity. We prove that for λ> 0 large enough there exist ground-state solutions and, as λ→ + ∞, such solutions converges to a ground-state solution of the limit problem in Ω=int(V-1({0})).
Descrição
Palavras-chave
1-Laplacian operator, Bounded variation functions, Concentration results
Idioma
Inglês
Como citar
Bulletin of the Brazilian Mathematical Society, v. 51, n. 3, p. 863-886, 2020.