Publicação: Existence and Profile of Ground-State Solutions to a 1-Laplacian Problem in RN
dc.contributor.author | Alves, Claudianor O. | |
dc.contributor.author | Figueiredo, Giovany M. | |
dc.contributor.author | Pimenta, Marcos T. O. [UNESP] | |
dc.contributor.institution | Universidade Federal de Campina Grande | |
dc.contributor.institution | Universidade de Brasília (UnB) | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2020-12-12T01:45:48Z | |
dc.date.available | 2020-12-12T01:45:48Z | |
dc.date.issued | 2020-09-01 | |
dc.description.abstract | In this work we prove the existence of ground state solutions for the following class of problems {-Δ1u+(1+λV(x))u|u|=f(u),x∈RN,u∈BV(RN),where λ> 0 , Δ 1 denotes the 1-Laplacian operator which is formally defined by Δ1u=div(∇u/|∇u|), V: RN→ R is a potential satisfying some conditions and f: R→ R is a subcritical nonlinearity. We prove that for λ> 0 large enough there exist ground-state solutions and, as λ→ + ∞, such solutions converges to a ground-state solution of the limit problem in Ω=int(V-1({0})). | en |
dc.description.affiliation | Unidade Acadêmica de Matemática e Estatística Universidade Federal de Campina Grande | |
dc.description.affiliation | Departamento de Matemática Universidade de Brasília-UNB | |
dc.description.affiliation | Departamento de Matemática e Computação Universidade Estadual Paulista (Unesp) Faculdade de Ciências e Tecnologia | |
dc.description.affiliationUnesp | Departamento de Matemática e Computação Universidade Estadual Paulista (Unesp) Faculdade de Ciências e Tecnologia | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorship | Fundação de Apoio à Pesquisa do Distrito Federal | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorshipId | FAPESP: 2019/14330-9 | |
dc.description.sponsorshipId | CNPq: 303788/2018-6 | |
dc.description.sponsorshipId | CNPq: 304804/2017-7 | |
dc.format.extent | 863-886 | |
dc.identifier | http://dx.doi.org/10.1007/s00574-019-00179-4 | |
dc.identifier.citation | Bulletin of the Brazilian Mathematical Society, v. 51, n. 3, p. 863-886, 2020. | |
dc.identifier.doi | 10.1007/s00574-019-00179-4 | |
dc.identifier.issn | 1678-7544 | |
dc.identifier.scopus | 2-s2.0-85075077815 | |
dc.identifier.uri | http://hdl.handle.net/11449/199658 | |
dc.language.iso | eng | |
dc.relation.ispartof | Bulletin of the Brazilian Mathematical Society | |
dc.source | Scopus | |
dc.subject | 1-Laplacian operator | |
dc.subject | Bounded variation functions | |
dc.subject | Concentration results | |
dc.title | Existence and Profile of Ground-State Solutions to a 1-Laplacian Problem in RN | en |
dc.type | Artigo | |
dspace.entity.type | Publication | |
unesp.author.orcid | 0000-0003-4961-3038[1] | |
unesp.department | Matemática e Computação - FCT | pt |