Logotipo do repositório
 

Publicação:
K-MEANS CLUSTERING BASED ON OMNIVARIANCE ATTRIBUTE FOR BUILDING DETECTION FROM AIRBORNE LIDAR DATA

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

Building detection is an important process in urban applications. In the last decades, 3D point clouds derived from airborne LiDAR have been widely explored. In this paper, we propose a building detection method based on K-means clustering and the omnivariance attribute derived from eigenvalues. The main contributions lie on the automatic detection without the need for training and optimal neighborhood definition for local attribute estimation. Additionally, one refinement step based on mathematical morphology (MM) operators to minimize the classification errors (commission and omission errors) is proposed. The experiments were conducted in three study areas. In general, the results indicated the potential of proposed method, presenting an average Fscore around 97%.

Descrição

Palavras-chave

Airborne LiDAR, Building Detection, Clustering, Geometric Feature, Mathematical Morphology

Idioma

Inglês

Como citar

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. 5, n. 2, p. 111-118, 2022.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação