Logotipo do repositório
 

Publicação:
K-MEANS CLUSTERING BASED ON OMNIVARIANCE ATTRIBUTE FOR BUILDING DETECTION FROM AIRBORNE LIDAR DATA

dc.contributor.authorDos Santos, R. C. [UNESP]
dc.contributor.authorGalo, M. [UNESP]
dc.contributor.authorHabib, A. F.
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionPurdue University
dc.date.accessioned2023-03-01T20:50:48Z
dc.date.available2023-03-01T20:50:48Z
dc.date.issued2022-05-17
dc.description.abstractBuilding detection is an important process in urban applications. In the last decades, 3D point clouds derived from airborne LiDAR have been widely explored. In this paper, we propose a building detection method based on K-means clustering and the omnivariance attribute derived from eigenvalues. The main contributions lie on the automatic detection without the need for training and optimal neighborhood definition for local attribute estimation. Additionally, one refinement step based on mathematical morphology (MM) operators to minimize the classification errors (commission and omission errors) is proposed. The experiments were conducted in three study areas. In general, the results indicated the potential of proposed method, presenting an average Fscore around 97%.en
dc.description.affiliationSão Paulo State University - Unesp Dept. Of Cartography Presidente Prudente
dc.description.affiliationLyles School Of Civil Engineering Purdue University
dc.description.affiliationUnespSão Paulo State University - Unesp Dept. Of Cartography Presidente Prudente
dc.format.extent111-118
dc.identifierhttp://dx.doi.org/10.5194/isprs-annals-V-2-2022-111-2022
dc.identifier.citationISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. 5, n. 2, p. 111-118, 2022.
dc.identifier.doi10.5194/isprs-annals-V-2-2022-111-2022
dc.identifier.issn2194-9050
dc.identifier.issn2194-9042
dc.identifier.scopus2-s2.0-85132287061
dc.identifier.urihttp://hdl.handle.net/11449/241185
dc.language.isoeng
dc.relation.ispartofISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
dc.sourceScopus
dc.subjectAirborne LiDAR
dc.subjectBuilding Detection
dc.subjectClustering
dc.subjectGeometric Feature
dc.subjectMathematical Morphology
dc.titleK-MEANS CLUSTERING BASED ON OMNIVARIANCE ATTRIBUTE FOR BUILDING DETECTION FROM AIRBORNE LIDAR DATAen
dc.typeTrabalho apresentado em evento
dspace.entity.typePublication
unesp.departmentCartografia - FCTpt

Arquivos