Logotipo do repositório
 

Publicação:
Homologia singular

Carregando...
Imagem de Miniatura

Orientador

Vieira, João Peres

Coorientador

Pós-graduação

Matemática Universitária - IGCE

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Estadual Paulista (Unesp)

Tipo

Dissertação de mestrado

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Resumo (português)

A Topologia Algébrica descreve a estrutura geométrica de um espaço topológico, associando a ele um sistema algébrico, geralmente um grupo ou uma sequência de grupos. À funções contínuas entre espaços topológicos correspondem homomorfismos entre grupos associados a estes espaços. Nesta dissertação, mostraremos que a homologia singular com coeficientes em Z, constituem uma teoria de homologia, baseados nos axiomas de Samuel Eilenberg e Norman Steenrod. Apresentaremos, também, resultados clássicos como a não existência de um homeomorfismo entre Rm e Rn, para m diferente de n, o teorema do ponto fixo de Brouwer e a não existência de campo vetorial não-nulo nas esferas de dimensão par

Resumo (inglês)

The Algebraic Topology describes the geometrical structure of a topological space by associating an algebraic system, usually a group or a sequence of groups. To continuous functions between topological spaces correspond homomorphisms between groups associated to these spaces. In this work we will show that Singular Homology with Z-coe cients constitutes a homology theory, based on the Eilenberg-Steenrod Axioms. We also present some classical results as the nonexistence of a homeomorphism between Rm and Rn, if m ≠ n, the Brouwer's xed point theorem and the nonexistence of a non-zero vector eld in even dimension spheres

Descrição

Palavras-chave

Topologia algebrica, Axiomas de Eilenberg-Steenrod, Algebraic topology, Eilenberg-Steenrod axiom's

Idioma

Português

Como citar

RUY, Adriana Cristiane. Homologia singular. 2011. 154 p. Dissertação - (mestrado) - Universidade Estadual Paulista, Instituto de Geociências e Ciências Exatas, 2011.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação