Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Rethinking Regularization with Random Label Smoothing

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

Regularization helps to improve machine learning techniques by penalizing the models during training. Such approaches act in either the input, internal, or output layers. Regarding the latter, label smoothing is widely used to introduce noise in the label vector, making learning more challenging. This work proposes a new label regularization method, Random Label Smoothing, that attributes random values to the labels while preserving their semantics during training. The idea is to change the entire label into fixed arbitrary values. Results show improvements in image classification and super-resolution tasks, outperforming state-of-the-art techniques for such purposes.

Descrição

Palavras-chave

Convolutional neural networks, Label smoothing, Regularization

Idioma

Inglês

Citação

Neural Processing Letters, v. 56, n. 3, 2024.

Itens relacionados

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso