Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Rethinking Regularization with Random Label Smoothing

dc.contributor.authordos Santos, Claudio Filipi Gonçalves
dc.contributor.authorPapa, João Paulo [UNESP]
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionEldorado Research Institure
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2025-04-29T20:01:11Z
dc.date.issued2024-06-01
dc.description.abstractRegularization helps to improve machine learning techniques by penalizing the models during training. Such approaches act in either the input, internal, or output layers. Regarding the latter, label smoothing is widely used to introduce noise in the label vector, making learning more challenging. This work proposes a new label regularization method, Random Label Smoothing, that attributes random values to the labels while preserving their semantics during training. The idea is to change the entire label into fixed arbitrary values. Results show improvements in image classification and super-resolution tasks, outperforming state-of-the-art techniques for such purposes.en
dc.description.affiliationDepartment of Computer Science Federal University of Sao Carlos - UFSCar, Washington Luiz Road, SP
dc.description.affiliationDepartment of Software Application Eldorado Research Institure, 275 Alan Turing Av., SP
dc.description.affiliationDepartment of Computing State University of Sao Paulo - UNESP, 14-01 Eng. Luís Edmundo Carrijo Coube Av., SP
dc.description.affiliationUnespDepartment of Computing State University of Sao Paulo - UNESP, 14-01 Eng. Luís Edmundo Carrijo Coube Av., SP
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdFAPESP: 2013/07375-0
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdFAPESP: 2019/07665-4
dc.description.sponsorshipIdCAPES: 308529/2021-9
dc.identifierhttp://dx.doi.org/10.1007/s11063-024-11579-z
dc.identifier.citationNeural Processing Letters, v. 56, n. 3, 2024.
dc.identifier.doi10.1007/s11063-024-11579-z
dc.identifier.issn1573-773X
dc.identifier.issn1370-4621
dc.identifier.scopus2-s2.0-85191656399
dc.identifier.urihttps://hdl.handle.net/11449/304856
dc.language.isoeng
dc.relation.ispartofNeural Processing Letters
dc.sourceScopus
dc.subjectConvolutional neural networks
dc.subjectLabel smoothing
dc.subjectRegularization
dc.titleRethinking Regularization with Random Label Smoothingen
dc.typeArtigopt
dspace.entity.typePublication

Arquivos

Coleções