Rethinking Regularization with Random Label Smoothing
| dc.contributor.author | dos Santos, Claudio Filipi Gonçalves | |
| dc.contributor.author | Papa, João Paulo [UNESP] | |
| dc.contributor.institution | Universidade Federal de São Carlos (UFSCar) | |
| dc.contributor.institution | Eldorado Research Institure | |
| dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
| dc.date.accessioned | 2025-04-29T20:01:11Z | |
| dc.date.issued | 2024-06-01 | |
| dc.description.abstract | Regularization helps to improve machine learning techniques by penalizing the models during training. Such approaches act in either the input, internal, or output layers. Regarding the latter, label smoothing is widely used to introduce noise in the label vector, making learning more challenging. This work proposes a new label regularization method, Random Label Smoothing, that attributes random values to the labels while preserving their semantics during training. The idea is to change the entire label into fixed arbitrary values. Results show improvements in image classification and super-resolution tasks, outperforming state-of-the-art techniques for such purposes. | en |
| dc.description.affiliation | Department of Computer Science Federal University of Sao Carlos - UFSCar, Washington Luiz Road, SP | |
| dc.description.affiliation | Department of Software Application Eldorado Research Institure, 275 Alan Turing Av., SP | |
| dc.description.affiliation | Department of Computing State University of Sao Paulo - UNESP, 14-01 Eng. Luís Edmundo Carrijo Coube Av., SP | |
| dc.description.affiliationUnesp | Department of Computing State University of Sao Paulo - UNESP, 14-01 Eng. Luís Edmundo Carrijo Coube Av., SP | |
| dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
| dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
| dc.description.sponsorshipId | FAPESP: 2013/07375-0 | |
| dc.description.sponsorshipId | FAPESP: 2014/12236-1 | |
| dc.description.sponsorshipId | FAPESP: 2019/07665-4 | |
| dc.description.sponsorshipId | CAPES: 308529/2021-9 | |
| dc.identifier | http://dx.doi.org/10.1007/s11063-024-11579-z | |
| dc.identifier.citation | Neural Processing Letters, v. 56, n. 3, 2024. | |
| dc.identifier.doi | 10.1007/s11063-024-11579-z | |
| dc.identifier.issn | 1573-773X | |
| dc.identifier.issn | 1370-4621 | |
| dc.identifier.scopus | 2-s2.0-85191656399 | |
| dc.identifier.uri | https://hdl.handle.net/11449/304856 | |
| dc.language.iso | eng | |
| dc.relation.ispartof | Neural Processing Letters | |
| dc.source | Scopus | |
| dc.subject | Convolutional neural networks | |
| dc.subject | Label smoothing | |
| dc.subject | Regularization | |
| dc.title | Rethinking Regularization with Random Label Smoothing | en |
| dc.type | Artigo | pt |
| dspace.entity.type | Publication |
